2√4a³b²c(a>0b>0c>0)最简二次根式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:56:49
2√4a³b²c(a>0b>0c>0)最简二次根式
已知a+b+c=0求证:(a-b/c+b-c/a+c-a/b)(c/a-b+a/b-c+b/c-a)=9

(a-b)/c+(b-c)/a+(c-a)/b=(ab(a-b)+bc(b-c)+ca(c-a))/(abc)=(ab(a-b)+c(b²-a²)+c²(a-b))/(a

已知a,b,c,满足绝对值a-2+√a-2b+c+c²-c+1/4=0求±√a+b+c

|a-2|+√(a-2b+c)+c²-c+1/4=0即|a-2|+√(a-2b+c)+(c-1/2)²=0显然绝对值、根号,平方数都是大于等于0的三者相加等于0那么三个数都等于0所

设a,b,c为整数,且a*a+b*b+c*c-2a+4b-6c+14=0,求a,b,c

(a²-2a+1)+(b²+4b+4)+(c²-6c+9)=0(a-1)²+(b+2)²+(c-3)²=0∵(a-1)²≥0;(b

已知a>b>c>0,求证a^(2a)b^(2b)c^(2c)>a^(b+c)b^(a+c)c^(a+b)

作商法[a^(2a)b^(2b)c^(2c)]/〔a^(b+c)b^(a+c)c^(a+b)〕=a^(a-b)*a^(a-c)*b^(b-c)*b^(b-a)*c^(c-b)*c^(c-a)=(a/b

a+b+c=0,abc求a(b+c)+b(a+c)+c(a+b)

a=b=1c=-2则a(b+c)+b(a+c)+c(a+b)=-6a=1b=2c=-3a(b+c)+b(a+c)+c(a+b)=-14事实上a(b+c)+b(a+c)+c(a+b)=-a^2-b^2-

设a,b,c>0,证明:a^2/b+b^2/c+c^2/a>=a+b+c

(c²/a)+(a²/b)+(b²/c)≥a+b+c,且仅当a=b=c时取等号用费马不等式证明由费马不等式的一般形式可得三元形式的费马不等式(x1²+x2&su

若a>b>c>0求证明a^(2a)b^(2b)c^(2c)>a^(a+b)b^(c+a)c^(a+b)

要证a^(2a)•b^(2b)•c^(2c)>a^(b+c)•b^(c+a)•c^(a+b)=(bc)^a•(ca)^b•(ab

A>B>C>0,求证A^2A+B^2B+C^2C>A^(B+C)B^(A+C)C^(A+B)

证明由题意知:a>b>c>0,则(a^(2a)*b^(2b)*c^(2c))/(a^(b+c)*b^(c+a)*c^(a+b))=(a^a*b^b*c^c)/(a^((b+c)/2)*b^((c+a)

已知非零实数a,b,c满足|a+b+c|+(4a-b+2c)的平方=0,求 (a+b)/(b-c)等于几?

已知非零实数a、b、c满足|a+b+c|+(4a-b+2c)²=0,求(a+b)/(b-c)等于几?由于|a+b+c|、(4a-b+2c)²都是非负数,所以必有:|a+b+c|=0(4

已知a,b,c满足1\2|a+b|+√(2b+c)+c²+1\4-c=0,求a(b+c)的值

1\2|a+b|+√(2b+c)+(c-1\2)²=0,所以由非负性得c=1\2,b=-1\4,a=1\4a(b+c)=1\4*1\4=1\16

已知a《b《0《c,化简|a-b|+|a+b|-|c-a|+2|c-b|.

a≤b≤0≤cb-a≥0a-b≤0a+b≤0c-a≥0c-b≥0∴|a-b|+|a+b|-|c-a|+2|c-b|=b-a-a-b-c+a+2c-2b=-2b-a+c

a>b>0,c

c0,又有a>b>0,相加得到a-c>b-d

设a>b>c,且a+b+c=0,求证:√(b^2-ac)

百度上有人问过,给你转来了:a>b>c,因此(a-b)(a-c)>0b=-(a+c)代入得(2a+c)(a-c)>0即2a^2-ac-c^2>0从而a^2+ac+c^20,否则a+b+c<0)即√[(

已知向量a,b,c满足|a|=2 a/|a|+b/|b|=(a+b)/|a+b|,(a-c)*(b-c)=0,则|c|的

sqrt(3)-1≤|c|≤sqrt(3)+1a/|a|+b/|b|=(a+b)/|a+b|,a/|a|、b/|b|、(a+b)/|a+b|分别表示a、b、a+b的单位向量故a和b的夹角为2π/3,且

a>0,b>0,c>0,a+b>c,求证a/(a+2)+b/(b+2)>c/(c+2)

a/(a+2)+b/(b+2)>c/(c+2)等价于a/(a+2)+b(b+2/)-c/(c+2)>0通分得【a(b+2)(c+2)+b(a+2)(c+2)+c(a+2)(b+2)】/(a+2)(b+