2x×e^(-2x)在0到正无穷上求定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:13:51
你的arctanx在分子上还是分母上?再问:分母再答:下次请将括号带上lim(x→0)(x(e^x+1)-2(e^x-1))/[(e^(x^2)-1)arctanx](运用等价无穷小代换)=lim(x
令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²
有没有写错?x趋于0三项的极限都存在所以原式=e^0+sin0+0^2=1
所谓等阶无穷小代换, 是以罗毕达法则为保证的, 很多教师在学生还没有学罗毕达法则时,用罗毕达法则试出一大串所谓的“等阶无穷小”,然后要学生死记硬背,把一门生气勃勃的微积分教成了靠死
用分步积分法∫x^2e^(-x)dx=-∫x^2d(e^(-x))=-x^2e^(-x)+∫2xe^(-x)dx+C1=-x^2e^(-x)-∫2xd(e^(-x))+C1=-x^2e^(-x)-2x
lim(x~0)((e^x+e^2x+e^3x)/3)^1/x=lim(x~0)(e^(ln(e^x+e^2x+e^3x)/3)/x)=e^(lim(x~0)(ln(e^x+e^2x+e^3x)/3)
利用罗比达法则lime^x-e^-x-2x/x-sinx(分子分母同求导,下同)=lime^x+e^-x-2/1-cosx=lime^x-e^-x/sinx=lime^x+e^-x/cosx=2
令t=e^x,则dt=e^x*dx=tdxdx/[e^x+e^(2-x)]=dx/[t+(e^2/t)]=tdx/(t^2+e^2)=dt/(t^2+e^2)令t/e=u,t=eu,则dt=edu,d
∵lim(x->0)[ln(x+e^x)/x]=lim(x->0)[(1+e^x)/(x+e^x)](0/0型极限,应用罗比达法则)=(1+1)/(0+1)=2∴lim(x->0)[(x+e^x)^(
用洛必达法则,极限为无穷大.
原式=∫(1+2e^x)dx=∫dx+2∫e^xdx=x+2e^x+C
(x->0)lim[2+e^(1/x)]/[(1+e^(2/x)]+|x|/x=(t->∞)lim(2+e^t)/(1+e^2t)+t/|t|变换变量t=1/x=(t->∞)lim(2/e^t+1)/
x趋于0时,e^x趋于1,x^2趋于0,所以(e^x)/x^2趋于正无穷.
这是我的做法:
最后一个除的式子用洛必达法则=lime∧x-lime∧-x+lim2/(sec∧2x-1)=1+1+0=2
令x=π/2-t,dx=-dt当x=0,t=π/2,当x=π/2,t=0L=∫(0-->π/2)e^sinx/(e^sinx+e^cosx)dx=∫(π/2-->0)e^sin(π/2-t)/[e^s
再问:还是不太懂啊,就是你最后一步,e^x-(-e^x)你是直接把x=1和x=0带进去的吗?那为什么不是+2而是-2?自学中,所以请见谅再答:理解,我也是自学党这里用了微积分基本定理:牛顿- 
答案不等于-1.lim(x→0)(1-e^(x^2))/x=lim(x→0)-x^2/x=0再问:为什么(e^x)-1等价与x我做出来等于-X。答案就是0了再答:x趋于0时,e^x-1等价于x,你题目