2x²-ax 1≥0在(0,正无穷)恒成立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:10:28
解析:采用求导得f'(x)=2x+1/(x^2)令f'(x)>0解得x>0再问:求导没学过,设0<x1<x2的方法这么做再答:任取0
①f(-x)=aˆ-x+aˆ-(-x)=aˆ-x+aˆx=f(x)∴f(x)为偶函数,关于y轴对称②f′(x)=aˆxlna-aˆ-xlna
(1)f(x)=lg1+ax1+2x,x∈(-b,b)是奇函数,等价于对于任意-b<x<b都有f(-x)=-f(x) (1)1+ax1+2x>0 
直接利用偶函数的性质:F(-x)=F(x)把函数表达式代入计算就可以得到a的x次方=1因为对任意x都成立所以只有当a=1d的时候才能成立
(1)依题意知:当x∈(-b,b)时,f(-x)=-f(x)恒成立,即 lg1-ax1-2x=-lg1+ax1+2x恒成立, 而lg1-ax1-2x=-lg1+ax1+2x⇔1-a
你的导数的时候错了,前面相当于是三项的倒数,其实你可以一开始就是g(x)的后项同时分子分母同时乘以1+2^x,因为这是永远>0的,故只要求分子的了再问:我是把它当作三项的导数的啊
∵定义在区间(-b,b)上的函数f(x)=lg1+ax1−2x是奇函数∴f(-x)+f(x)=0∴lg1−ax1+2x+lg1+ax1−2x=0∴lg(1−ax1+2x×1+ax1−2x)=0∴1-a
f′(x)=a(x2+1)(1-x2)2;∴a>0时,f′(x)>0;∴f(x)在(-1,1)上单调递增;a<0时,f′(x)<0;∴f(x)在(-1,1)上单调递减.
解由命题p:关于x的方程x2+ax+2=0无实数根则Δ<0即a^2-4*2<0即-2√2<a<2√2由命题q函数fx=logax在(0,正无穷)上单调递增即0<a<1由若P^q为假,PvQ为真则p与q
这个用区间套的思想就可以了因为f(x)在[0,正无穷)上有界所以存在实数M,N,使得M=a_2时,f(x)一定落在一个宽度为d/2^2的开区间内以此下去,我们可以证明出f(x)的极限存在
∵定义在区间(-b,b)内的函数f(x)=lg1+ax1+2x是奇函数,∴任x∈(-b,b),f(-x)=-f(x),即lg1−ax1−2x=-lg1+ax1+2x,∴lg1−ax1−2x=lg1+2
解(1)f(x)=lg1+ax1+2x(-b<x<b)是奇函数等价于:对任意x∈(-b,b)都有f(-x)=-f(x) ①1+ax1+2x>0 ②①式即为lg1-
反证法.如果f(x)在[a、b]上不是恒为正或恒为负则意味着存在c,d在[a,b]内使得f(c)f(d)
因为a≥0,b≥0,a+b=1,所以1≥a≥0,1≥b≥0又以为,b=1-a所以:(aX1+bX2)(aX2+bX1)=[x1-b(x1-x2)][x2+b(x1-x2)]=x1x2+bx1(x1-x
没学导数吗?好简单哦!f'(x)=1+(0-2)/(x*x)=1-2/(x*x);当f'(x)>0即1-2/(x*x)>0,x>根号2时,单调递增,根号2时就递减,在根号2出有最小值(在定义域内).
(1)f(x)=4/5x-ln(1+x^2)f'(x)=4/5-2x/(1+x^2)=2(2x²-5x+2)/[5(1+x²)]令f'(x)=0得x=1/2,2x(0,1/2)1/
A是不是={x|ax-1=0}?如果是因为A是B的子集,所以A有可能是空集也有可能是B的非空子集1‘A为空集时,a=02’A为B的非空子集时,因为B={x|x^2-3x+2=0}={x|(x-2)(x