2x 3 3x 满足a1-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:09:18
2x 3 3x 满足a1-1
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an

an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1

若数列{An}满足A1=1,A(n+1)=An/(2An + 1)

1)1/3,1/52)倒数变换一下即可证明从该步骤得到an=1/(2n-1)3)T=(1/1*1/3+1/3*1/5+1/5*1/7+……+[1/(2n-3)][1/(2n-1)]=1/2(1-1/3

设数列满足a1=2,an+1-an=3•22n-1

(Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,所以数列{an}的通

已知数列{An}满足A1=1,A=3(n-1)+A(n>/2)

1a2=4a3=13我想这个你应该会求吧.2观察a-a=3^(n-1)可采用累加法a-a=3^(n-1)a-a=3^(n-2).a-a=3把上面的式子全部加起来,可得a-a=(3^n-3)/2解得a=

已知数列{an}满足an=2an-1+2n+2,a1=2

你把这个数列看成俩部分a(n1)=2a(n1-1)a(n2)=2n+2an=(an1)+(an2)算算看

设数列an满足a1=2 an+1-an=3-2^2n-1

(1)根据题意,有An=(An-An-1)+(An-1-An-2)+…+(A2-A1)+A1=3-2^(2n-3)+3-2^(2n-5)+…+(3-2^3)+2再用分组求和法:=3n-【2^(2n-3

已知整数a1,a2,a3,a4,...满足下列条件:a1=2,a2=-|a1+1|.a3=-|a2+2|,a4=-|a3

a1=2a2=-3a3=-1a4=-2a5=-2a6=-3a7=-4……a2013=-(2013-3)=-2010

等比数列an满足 lim(a1+a2+a3+...+an)=1/2 求a1取值范围

lim(a1+a2+a3+...+an)=1/2说明等比数列为收敛数列,即公比q0Sn=a1(1-q^n)/(1-q)limSn=a1/(1-q)=1/2a1=1/2-1/2q因为0

一直数列{An}满足A1=1/2,A1+A2+…+An=n^2An

A1=1/2成立,设An=1/[n(n+1)]成立,因为A1+A2+…+An=n^2An所以A1+A2+…+An+A(n+1)=(n+1)^2A(n+1),所以A(n+1)=(n+1)^2A(n+1)

已知数列an满足条件a1=-2 an+1=2an+1则a5

a[n+1]=2a[n]+1a[n+1]+1=2(a[n]+1)则{a[n]+1}是公比为2的等比数列a[1]+1=-2+1=-1所以a[n]+1=(-1)*2^(n-1)a[n]=-2^(n-1)-

已知ai≠0,(i=1,2,3,4,...2011,2012),满足|a1|/a1+|a2|/a2+|a3|/a3+..

因为|ai|/ai=1或-1又因为:|a1|/a1+|a2|/a2+|a3|/a3+...+|a2011|/a2011+|a2012|/a2012=1968;所以这2012组中,有22个取到-1;y=

设数列{an}满足an+1/an=n+2/n+1,且a1=2

1、a(n+1)/an=(n+2)/(n+1)a(n+1)/(n+2)=an/(n+1)设cn=an/(n+1)则c(n+1)=a(n+1)/(n+2),且c1=a1/(1+1)=1即c(n+1)=c

已知数列{an}满足a1+a2+a3+...+an=n^2+2n.(1)求a1,a2,a3,a4

a1+a2+a3+...+an=n^2+2n可得:Sn=a1+a2+a3+...+an=n^2+2n当n=1时有:a1=S1=1+2=3当n≥2时有:an=Sn-S(n-1)=n^2+2n-(n-1)

已知数列{AN}满足A1=1,AN+1=2AN+2的N次方.

1.a_(1)=1,a_(n+1)=2a_(n)+2^(n)----------------1b_(n)=a_(n)/2^(n)将式子1左右两边同时除以2^(n+1),则:b_(n+1)=b_(n)+

已知数列满足{an}满足a1=2,an+1=an-{n(n+1)分之一}

1)累加法a1=2a2-a1=1/(1*2)a3-a2=1/(2*3)a4-a3=1/(3*4).an-a(n-1)=1/[(n-1)n]相加得an=2+(1-1/2)+(1/2-1/3)+(1/3-

已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1);

a2=a1+2a2=1+2a2得a2=-1an=a1+2a2+3a3+...+(n-2)a(n-2)+(n-1)a(n-1)a(n-1)=a1+2a2+3a3+...+(n-2)a(n-2)两式相减:

已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3

a1=0,a2=-|a1+1|=-|0+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,…,所以,n是奇

数列{an}满足a1=1 an+1=2n+1an/an+2n

(1)a(n+1)/2^(n+1)=an/(an+2^n)2^(n+1)/a(n+1)=(an+2^n)/an=1+2^n/an2^(n+1)/a(n+1)-2^n/an=1所以{2^n/an}是以公