2acosc=2b―根号3c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:05:32
根号3-c)cosA=acosC这个条件应该是(根号3b-c)cosA=acosC否则无解利用正弦定理sqr(3)*2RsinBcosA-2RsinCcosA=2RsinAcosC两边除掉2R并移向s
acosC+√3asinB-b-c=0利用正弦定理a/sinA=b/sinB=c/sinCsinAcosC+√3sinAsinC-sinB-sinC=0∵sinB=sin(A+C),sinAcosC+
(√3b-c)cosA=acosC(√3sinB-sinC)cosA=sinAcosC√3sinBcosA=sinAcosC+sinCcosA√3sinBcosA=sin(A+C)√3sinBcosA
=2acosC,sinB=2sinAcosCsin(180-A-C)=2sinAcosCsin(A+C)=2sinAcosCsinAcosC+cosAsinC=2sinAcosCcosAsinC=si
一问:sinAcosC+√3sinAsinC-sinB-sinC=0sinAcosC+√3sinAsinC-sin(A+C)-sinC=0sinAcosC+√3sinAsinC-sinAcosC-co
(√3b-c)cosA=acosC(√3sinB-sinC)cosA=sinAcosC√3sinBcosA=sinAcosC+sinCcosA√3sinBcosA=sin(A+C)√3sinBcosA
(√3b-c)cosA=acosC(√3sinB-sinC)cosA=sinAcosC√3sinBcosA=sinAcosC+sinCcosA√3sinBcosA=sin(A+C)√3sinBcosA
将(2b-根号3c)cosA=根号3acosC代入正弦定理得:(2sinB-根号3sinC)cosA=根号3sinAcosC,A为30°选12ABC为钝角三角形,用正弦定理得b为2根号2,C为105°
(√3×b-c)cosA=acosC根据正弦定理(√3sinB-sinC)cosA=sinAcosC∴√3sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB∵sinB>0
∠A=60° 我用的是几何方法,画出图.作BD⊥AC,设AD=x那么cosA=AD/AB=x/ccosC=CD/CB=(b-x)/a代入(2b-c)cosA-acosC=0得(2b-c)x/
利用正弦定理:a/sinA=b/sinB=c/sinC,2bcosA=ccosA+acosC>>>>>A=60°===>>>cosA=[b²+c²-a²]/(2bc)=[
(1)2bcosA=√3ccosA+√3acosC=√3(ccosA+acosC)=√3b∴cosA=√3/2∴A=30°(2)若a=2B=45°则:2/sin30°=b/sin45°,∴b=2√2,
1.sinAcosC+根号3/2sinC=sinB又∵sinB=sinAcosC+cosAsinC∴cosA=根号3/2∴A=π/62.a=1,根号3c=1+2b代入原式得cosC+(1+2b)/2=
(1)acosC+√3asinB-b-c=0利用正弦定理a/sinA=b/sinB=c/sinCsinAcosC+√3sinAsinC-sinB-sinC=0∵sinB=sin(A+C),sinAco
acosC+√3asinB-b-c=0利用正弦定理a/sinA=b/sinB=c/sinCsinAcosC+√3sinAsinC-sinB-sinC=0∵sinB=sin(A+C),sinAcosC+
①过B作BE垂直AC交AC于E,(2b-根号3c)cosA=根号3acosC,所以2b•cosA-根号3c•cosA=根号3acosC推出2b•cosA=根号3
题目条件有错误,应该是acosC+√3asinC-b-c=0,算死我了.答:(1)三角形ABC中,acosC+√3asinC-b-c=0acosC+√3asinC=b+c结合正弦定理a/sinA=b/
前面我发了封私信你,作废,我用另外个号,就是这个号,帮你答了再问:第二行怎么得出来的?O(∩_∩)O谢谢再答:用了正弦定理,a/sinA=2R左右同时乘2R啦
s代表sin正弦定理a/sA=b/sB=c/sC得b=asB/sA,c=asC/sA代入得(2asinB/sinA-根3asinC/sinA)cosA=根3acosC2cosAsinB=根3cosAs
由正弦定理知:cosc=sinc所以C=45*又已知a+b=2+2根号2所以由余弦定理:a平方+b平方=c平方+2abCOSC=(a+b)平方-2ab=12+8根号2=4+2ab*根号2除2即12+8