半径为r的无限长均匀密绕螺线管,单位长度上匝数为n通以交变电流I=I0sin
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:10:00
两螺线管单位长度上的匝数相等磁感应强度定义BR=B
E(r)【矢量】=0(rR),
我觉得应该是B大,你可以拿个条形磁铁,随便扔一个小铁球在他的两端,看小铁球停在哪,哪就大.条形磁铁跟螺线管是一样的.
取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷
F=GmM/r^2由此公式可以得出g=GM/R^2轨道半径r处,g’=GM/r^2已知卫星周期为T由圆周运动F=mV²/r=4mπ²r/T²得g’=GM/r^2=4π&s
已知线圈半径为R,电流为I,电流方向逆时针求线圈圆心C处的磁感应强度及方向..C处的磁感应强度的大小应为圆电流圆心处磁感应强度:B=μI/2R其中,μ=4π×10^(-7),为真空磁导率.根据右手定则
B=μ0nIΦm=NBS=Nμ0nIπr^2感应电动势大小:ε=dΦm/dt=Nμ0nπr^2dI/dt
B=μ0nIΦm=NBS=Nμ0nIπr^2感应电动势大小:ε=dΦm/dt=Nμ0nπr^2dI/dt
选两柱之间的半径为r处的无限圆筒为高斯面由对称性知电场仅有径向分量E_r取长为L的一段高斯面高斯面面积为2*pi*r*L内部电荷为Q=a*LE*2*pi*r*L=a*L得E=a/(2*pi*r)
再问:求解为什么过程再答:其实我才高三,这答案是我帮你搜的,你想知道为什么就等别人答吧,我无能为力了。。。对不起啊!
利用对称性,根据高斯定理计算(1)
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
就是运用环流定律.在导线内部的圆环中没有电流,所以磁场是0.在导线外部的圆环中电流是I,故根据B*2πx=μ*I得B=μ*I/(2πx)故选B.
先用高斯定理求出电场分布,再积分得到电势.圆柱体内电场pr/2e,外电场pR^2/2re,e这里是真空介电常数.外电势-(pR^2)(lnr)/(2e),内电势[-(pR^2)(lnr)/(2e)]+
设重心离此半圆弧的圆心的距离为x,将此圆弧饶两端点所在直线旋转一周形成一球面,则此球面面积S=圆弧长l*重心移动距离r=πR*2πx=4πR^2,解得x=2R/π.故半圆弧的中心位置在其对称轴上圆心与
Φ=BS=πBR²Φ=BSsina=πBR²sina再问:好吧,我懂了,谢谢再答:再见
无限长均匀带电圆柱面内外的电场强度分别为E=0,E=a/(2πεr)设有限远r0处的电势为零,则电圆柱面外部距轴线为r的任一点的电势为U=∫Edr(积分限r到r0)=a/(2πε)*ln(r0/r)圆
根据对称性,完整的圆环对圆心的电荷产生的电场力为0.把圆环分为两部分,带缺口圆环和长度为L的部分对圆心的电荷产生的电场力互相抵消,即大小相等.单位长度上电荷量为Q2=Q1/(2πR-L)——为书写方便
两头无线长的导线在0处产生的磁场一个向上,一个向下,且刚好抵消.所以只需要算出中间那一段弧在o处产生的磁感应强度,B=ΣkI△L/R^2=(2π/3)RIK/R^2=2πIK/3R方向向上其中K=μ/
这是大物(下)的题.因同轴圆柱体的电流分布具有轴对称性,故圆柱体中各区域的磁感应线都是以圆柱轴线为对称轴的同心圆.在内导体圆柱中作一半径为r、和轴线同心的圆环形闭合回路,回路绕行方向与磁感应线方向相同