半径为r,均匀带电球面,求空间个点电场强度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:38:58
半径为r,均匀带电球面,求空间个点电场强度
一半径为R的均匀带电球面,带电量为Q,若规定球面上电势值为零,则无线远处电势为多少?

答:均匀带电球面球外空间电场等效于点电荷在球心处产生的电场.取无限远为零势面,则φ=kQ/r,则r=R处电势为φ=kQ/R.若规定球面上电势值为零,由于球面与无限远的电势差不变,因此φ=-kQ/R,Q

求均匀带电球面内外场强及电势分布.带电量为Q,半径为R.如果是均匀带电球体呢?

带电量为Q,半径为R.均匀带电球面内外场强及电势分布内部场强E=0球外部等效成球心处一点电荷E=KQ/r^2r>R电势相等球外部等效成球心处一点电荷Φ=KQ/r如果是均匀带电球体,结果与球壳相同

均匀带电球面,电荷面密度为a,半径为R,球面内任一点的电势()

B均匀带电球面,电场是对称分布的,高斯面的选取就选和带电球面同球心的球面,这样高斯面上的各点的场强大小相等,方向沿着球半径,也就是各点的球面法向方向.高斯面的电场强度通量Φe=∮E×dS(矢量积分)=

求一半径为R电荷量为Q的均匀带电球面内外任一电的电场强度和电势

球内场强为0,电势相等为球壳处电势球外的电场和电势分布和把球上电荷看成集中在圆心的点电荷相同

半径为R的均匀带电球面,总电量为Q在球面上挖去小块的面积S(连同电荷)求球心处电场电场强度大小

当没有挖去小块的面积S时,球心处的电场强度为0(这一点可以用微元法证明),现挖去小块的面积S(可视为点电荷),挖去的电荷量为QS/(4πR²),在球心处产生的电场强度为kQS/(4πR^4)

大学物理电学经典例题一:一半径为R的均匀带电球面,电荷面密度为P,求球面内、外的场强分布;二:一半径为R的均匀带电薄球壳

一:球内场强0,球外场强公式同点电荷.二:电场强度的分布同“一”,球心O的电势等于球表面的电势,公式同点电荷.

半径为R的均匀带电球壳,电量为Q,试求球面内电场强度大小及球心处电势?

半径为R的均匀带电球壳,电量为Q,球面内电场强度大小为0,球心处电势为kQ/R

半径为r的均匀带电球面1,带电量为q,其外有一同心的半径为R的均匀带电球面2,带电量为Q,两球面的电势差

高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明

真空中有一均匀带电球面,球半径为r,总带电量为q,今在球面上挖出一很小面积ds,设其真空中有一均匀带电球面,

正确的解法应该是完整均匀带电球面的电势(整个球体是等势的)减去ds上的电荷单独存在时在球心处产生的电势——kq/r-k[q(ds/πrr)]/r.你大概是没算kq/r而只算k[q(ds/πrr)]/r

半径为R的均匀带电球面的电势为U,圆球绕其直径以角速度W转动,求球心处的磁感应强度?

设球带电量为q,由球内电势公式得kq/r=u,所以求带电量q=ru/k,所以球带电的面密度σ=q/s=q/(4πr^2)=ru/k(4πr^2)在球面上选一个平行于水平面小环带,半径a=r*cosθ(

一个半径为R的球面均匀带电,电荷面密度为a,求球面内,外任意一点的电场强度?

数学上可以证明,电荷均匀分布的带电球体对外部的电作用,等效于位于球心处同样电量的点电荷的作用.——高2物理书那么对这道题,可以根据球体表面积公式算出这个球体的电荷,然后根据点电荷电场强度公式得到答案(

今有一半径为R,带电量为2q的均匀带电球面,其内部电势与球面上的电势_____(相等,不相等)

今有一半径为R,带电量为2q的均匀带电球面,其内部电势与球面上的电势___相等__,根据高斯定理可得球面内电场强度为零,所以球内为等势体,球面为等势面,且它们相等.

半径为r电量为q均匀带电球面内某一点电势为___

整个球面以及内部空间是等势体,电势与一带电量为q的点电荷在距离为r的点产生的电势相等.U=q/(4πεr)具体来说,用积分做,电场强度E=q/(4πεr^2),球表面的电势为E从r到无穷远点对r的积分

一个半径为R的球面均匀带电,球面所带的电荷量为Q,求空间任意一点的电势,并由电势求电场强度

半径为R的均匀带电球,其外部电场可视为位于球心的点电荷的电场,类比于静电平衡时,均匀带电的金属球,可知:球外部空间:E=kQ/r^2,φ=kQ/r(r≥R)球内部空间:E=0,φ=kQ/R

求电势以及E的问题,真空中有一均匀带电球面,球半径为R总带电量为Q(Q>0),现在球面上挖去很小面积,其上电荷为dq,面

高斯定理指的是如果球面内电荷为0,这整个球面上的总电通量为0.如果球面外有一个点电荷,则球面的一侧有像内的通量,另一侧有向外的通量,二者抵消.但这并不意味着该处的电场为0所以把它当成点电荷计算是正确的

已知一均匀带点同心球面、内半径为R1、带电量为Q1、外半径为R2、带电量为Q2、求r=R2时的电势

这个简单(Q1+Q2)/(4*PI*episilon*R2)再问:你确定不?我也是这么想的、但是有学习好的同学跟我的不一样、她们的好复杂的再答:绝对确定,如果他们复杂,可能是通过电场去积分的,不需要

一个半径为R的球体均匀带电,电荷量为q,求空间各点的电势

U=q/(4*pi*e0*R)(r=R)其中pi是派=3.14,e0是真空介电常数