区间负无穷到正无穷的表示
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:25:03
嘿我前面不是证过了么?取任意x1-x2属于(0,+无穷)由题意f(-x1)>f(-x2)根据奇函数,-f(x1)>-f(x2)所以f(x1)
你学过复变函数吗?最好的办法是利用复变函数中的留数来计算.积分的围线选实轴上[-r,r]的线段和以r为半径,0
设lim{x->∞}f(x)=A由极限保号性可知存在X>0,当|x|>X时,|f(x)|
^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。
首先积分只有在a>0时有意义由于对称性从负无穷到正无穷对e^-at^2=2从0到正无穷对e^-at^2=2∫e^(-at^2)dt[∫e^(-at^2)dt]^2=∫e^(-ax^2)dx∫e^(-a
反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π
正无穷的负无穷次方等于正无穷的正无穷次方分之一,也就是正无穷分之一,然后就是0了,为什么这样是不对的出处?再问:这是我的理解,想问哪里出问题了再答:正无穷的负无穷次方等于正无穷的正无穷次方分之一,也就
奇函数关于原点对称所以y轴左边和右边对应的趋于一个三x轴上方,一个在x轴下方所以面积一正一负,正好抵消所以积分=0
如果上面要问的函数是y=(x-1)^3的话,楼主可作如下思考首先,可把y=(x-1)^3看作是将幂函数y=x^3在坐标系的图像整体向右移动一个单位.根据y=x^3在其定义域中的单调递增来看,y=(x-
当K为正,单调增!当K为负,单调减!当K=0,无!
你看题目,是不是 x<0时,f(x)=0 所以在负无穷到0积分值为0 就直接从0到正无穷积分
x=-10:10;z=-20:20;[X,Z]=meshgrid(x,z);y=0.5.*X;surf(X,Z,y);axisequal;
∵f'(x)=e^x当x∈R时,f'(x)>0∴f(x)=e^x在(-∞,+∞)上是增函数.
-3<f(2x+1)≤0f(-2)<f(2x+1)≤f(0),在[0到正无穷]上为增函数,得在负无穷到正无穷上为增函数,所以,-2<2x+1≤0-3
000故极限为零