勾股定理早还是毕氏定理早
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:40:20
因为陈子是比毕达哥拉斯早年代的人,所以有人主张将“毕达哥哥拉斯定理”改称“陈子定理”.1951年,我国的《中国数学》杂志以“勾股定理”为其命名.
在△ABC中,B为直角,D是AC边上的高在△BAD与△BCD中,∵∠BDA=∠BDC=90°,且∠DBC+∠C=90°,∴∠ABD=∠C,又∵∠BDA=∠BDC=90°∴△BAD∽△CBD∴AD/BD
勾股定理的来源 毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明.毕达哥拉斯在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三
勾股定理在欧洲中世纪被戏称为“驴桥”,因为那时数学水平较低,很多学习欧几里得《原本》的人到这里被卡住,难于理解和接受.所以勾股定理被谑称为「驴桥」,意谓笨蛋的难关.另外,据说毕达哥拉斯发现了这个定理后
记AD=a,BD=b,BC=c,AC=d,CD=e在直角三角形ABC中,由勾股定理(a+b)(a+b)=d平方+c平方即a平方+2ab+b平方=d平方+c平方因为a平方=d平方-e平方b平方=c平方-
勾股定理是毕得格拉斯定理
在平面几何中,有这样一条著名的定理:直角三角形中,两直角边的平方和等于斜边的平方,即C平方等于A平方加上B平方.西方人认为这定理是毕达哥拉斯在公元前500年发现的,所以称为毕达哥拉斯定理
中国古代数学把直角三角形中短直角边叫勾,长直角边叫股,斜边叫弦.直角三角形中,勾的平方+股的平方=弦的平方.这一规律就叫勾股定理.这是直角三角形的最基本定理之一.
勾股定理:在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem).定理:如
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”.勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,
勾股定理是在直角三角形中,两直角边的平方和等于斜边的平方.勾三股四玄五,就是两直角边分别为3、4,斜边为5在△ABC中,∠A、∠B、∠C对应的三边分别为a、b、c正弦定理:三角形三个边长与对应角正弦值
尺寸不全ab=9?是4吧如果jd=2,abed是正方形的话则整个图形的面积为100再问:3jd没说呢再答:3jd是什么意思,jd=3吗若是,则整个图形的面积为110再问:有过程吗?啊!???、????
有这样一条著名的定理:直角三角形中,两直角边的平方和等于斜边的平方,即C平方等于A平方加上B平方
1、相似三角形的有关概念(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.(2)相似比:相似三角形对应边的比.二)、相似三角形1、相似三角形的有关概念
设三角形ABC,AD为BC边上的高,AD=aBD=bCD=c所以角ADB=角ADC=90',由射影定理知a^2=bc,所以a\b=b\c所以三角形ABD相似于三角形CAB,所以角CAB等于角ABD,因
是的.中国最早证明勾股定理的是西周的商高,时间是公元前1000年左右;而毕达哥拉斯发现勾股定理是在约公元前500年.所以说,中国的勾股定理比毕达哥拉斯定理早了约500年.
在平面几何中,有这样一条著名的定理:直角三角形中,两直角边的平方和等于斜边的平方,即c平方等于a平方加上b平方.西方人认为这定理是毕达哥拉斯在公元前500年发现的,所以称为毕达哥拉斯定理.其实在我国现
毕达哥拉定理是怎么说的我只知道勾股定律你可以说说毕达哥拉定理吗我也学习下
在三角形ABC中,设AB=c,AC=b,BC=a,AD=d.则a²=b²+c²,bc=ad,c>d,a>c即求证c²=√(c²-d²)*a,
平面几何证法:在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC^2