动直线过点P(0,1),且与椭圆E交于AB两点,B 关于Y轴的对称点为B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:35:08
设动圆圆心坐标为(x,y)动圆过定点P(1,0),且与定直线l:x=-1相切就是说圆心到定点P和到直线l的距离都等于半径也就是:(x-1)^2+y^2=(x+1)^2解一下得到:y^2=4x
直线L:y=x+a代入抛物线方程中,x^2-2px-2ap=0,一元二次方程,有两个不同解,delta>0,a>-0.5p设交点A,B坐标分别是(x1,x1+a),(x2,x2+a)|AB|^2=2*
因由直线与圆相切知:点P到定直线与到定点的距离相等,结合抛物线的定义即可知点P的轨迹从而求出方程C的方程.根据抛物线的定义,可得动圆圆心P的轨迹C的方程为x²=y
【函数】让我们从函数的角度来看看吧。抽象一下,把①看成f(y)=0,②看成g(y)=0那么②-①就是g(y)-f(y)=0相当于构造了一个h(y)=g(y)-f(y)而这个h(y)=0现在跳出题目来看
(Ⅰ)根据抛物线的定义,可得动圆圆心P的轨迹C的方程为x2=y(4分)(Ⅱ)证明:设A(x1,x12),B(x2,x22),∵y=x2,∴y′=2x,∴AN,BN的斜率分别为2x1,2x2,故AN的方
设圆心M为(x,y),点M到直线X=-1的距离和到点P的距离相等,列一下方程就能得出,过程自己做一下吧,很简单的.
你解出M的方程后,可以根据P点跟斜率假设出直线方程,跟M联立解出A、B点坐标,然后C在X=-1上可以设为C点(-1,y)根据AC,BC垂直,则他们的斜率乘积等于负1.可以解出y值.
你好假设存在这样的正三角形ABC,设C点得坐标为(-1,m)由于过点P,且斜率为-3^1\2的直线方程为y=-√3(x-1),与轨迹M的方程为y^2=4x联立,可得3x^2-10x+3=0所以|AB|
设动圆圆心坐标为(x,y)动圆过定点P(1,0),且与定直线l:x=-1相切即圆心到定点P和到直线l的距离都等于半径根据两点间的距离公式可知,(x-1)^2+y^2=(x+1)^2整理得y^2=4x
是挺麻烦的,公司编辑器做了老半天~
动圆的轨迹很明显符合抛物线的定义:到定点的距离与定直线距离比等于1,故p/2=1,2p=4因此动圆心的轨迹是:y^2=4x
这道题精彩解法为,由AB⊥BC且三个点都在y^2=4x上,以AC为直径的圆,与抛物线有三个交点,A(4,4),B(b^4/,b),C(c^2/4,c).显然B点(0,0)时,C纵坐标为4即所求.
焦点不对吧,应改成交点.(直线和圆只有交点,不叫焦点)那P点就是与椭圆相切的所有相互垂直直线交点的集合很容易找到位于x,y坐标上的4个点,4各点连线时正方形,显然是圆再问:能求出圆方程吗?再答:x^2
设与直线2x+3y-6=0平行的直线方程2x+3y+c=0把P(2,1)代入上式2-6+c=0c=4所以所求直线方程为2x+3y+4=0垂直的话设所求直线方程为3x-y+d=0把P(2,1)代入上式6
圆到点(1,0)的距离和到直线x=-1的距离相等!设动圆圆心坐标为(x,y),则有(x-1)^2+(y-0)^2=[x-(-1)]^2即(x-1)^2+y^2=(x+1)^2化简得y^2=4x是一条典
因为与直线l:x+y—5=0平行,则直线的斜率k=-1因为过点P(-2,1)则y-1=-1(x+2)y=-x-1
(1)与l平行的直线方程3x+2y+C=0过P(2,-1)代入6-2+C=0C=4∴直线方程3x+2y+4=0(2)过点P且与l垂直的直线方程2x-3y+C=0过P(2,-1)代入4+3+C=0C=-
圆心A(-2,0),半径1,显然|PA|=|PB|+1,|PA|-|PB|=1按定义,这是双曲线,|PA|>|PB|,这是双曲线的右支c=2,a=1/2b²=c²-a²=
一、思路先要画个清晰的图出来1圆心到直线的距离等于到定点p的距离,则轨迹为抛物线,设为y^=2px2根据抛物线的定义:到直线的距离等于到定点p的距离,在图上分别将PA,PB转化为到直线X=(-1)的距