动圆O与定圆O1X² Y² 6X=0外切
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:03:13
设动圆圆心M(x,y),则圆心与点A(2,0)间的距离等于半径,而动圆圆心与定圆圆心(-2,0)间的距离等于两圆的半径之差,以半径列等式就可以求出来了.
简单,先把圆的方程转化为标准方程,及(x-3)^2+(y-4)^2=4所以圆心坐标为(3,4),求点到直线距离|3k-4-4k+3|/sqrt(k^2+1^2)=d(||为绝对值符号,sqrt意为开根
设动员M的圆心为C(x,y),半径为r,则:定圆C1:x²+y²+4x=0化为(x+2)²+y²=4,可知圆心C1(-2,0),半径r1=2定圆C2:x
此题很明显点C的轨迹是椭圆圆c1:x²+(y-4)²=64,圆心(0,4),半径为8圆c2:x²+(y+4)²=4,圆心(0,-4)半径为2圆心c设为(x,y)
O1:(x+3)^2+y^2=3^2,圆心为(-3,0),半径为3O2:(x-3)^2+y^2=7^2,圆心为(3,0),半径为7O1与O2相交O的圆心为(x,y),半径为r,则它与O1圆心距=r+3
设圆心坐标(x,y)与定直线L:x=1相切,那么半径为|x-1|√[(x+2)^2+y^2]=|x-1|+1y^2=-8x
M(x,y)C1(-4,0),半径=√2C2(4,0),半径=√2和C1外切,所以圆心距等于半径和MC1=r+√2和C2内切,所以圆心距等于半径差MC2=r-√2所以MC1-MC2=2√2到定点距离差
设动圆圆心M(x,y)C1:(x+2)²+y²=4→C1(-2,0),r1=2C2:(x-2)²+y²=64→C2(2,0),r2=8与C1外切→|MC1|=r
圆心O(0,0)r1=1圆心C(4,0)r2=2设P(x,y)=√(x^2+y^2)-1=√((x-4)^2+(y-0)^2)-2√(x^2+y^2)+1=√((x-4)^2+(y-0)^2)两侧同时
定圆A为:(x-2)²/2²+y²/2²=1定直线为x=-1设动圆为P(x,y)∵圆P与l相切·∴rp=x+1又圆A与圆P外切∴ra+rp=AP=√((x-2)
因为x^2+y^2-6y=0故x^2+(y-3)^2=9不妨设动圆半径为R圆心为(x,y)因为与定圆相切则(R+3)^2=x^2+(y-3)^2……①因为与x轴相切则R=|y|……②解①②得y^2+6
圆x²+y²-6x=0,即:(x-3)²+y²=9∴圆心(3,0),半径是3∴与圆和y轴都相切的圆的圆心可能在x轴上,也可能在抛物线上∴轨迹方程是:y=0或者y
定圆为:x^2+(y-3)^2=3^2,即定圆圆心为(0,3),半径为3.设动圆圆心为(x0,y0),半径为r,则由动圆与x轴相切得:|y0|=r,y0=r或y0=-r由动圆与定圆相切得:(x0-0)
设动圆圆心M(x,y)动圆与y轴相切既是M到y轴的距离等于动圆半径r即|x|=r(1)动圆与定圆A:x^2+y^2-6x=0即圆A:(x-3)^2+y^2=9相切,也就是二心距等于半径之和即|AM|=
于y轴,定圆相切,说明动圆的圆心到定圆圆心和y轴的距离相差一个定值,定圆圆心为(3,0)半径为3.说明动圆圆心到x=-3的距离和到定圆圆心的距离相等,所以动圆圆心的轨迹是抛物线,轨迹为y2=12x
P(x,y),C1,C2不相交,也不重叠,P到C1,C2圆心距分别为:d1=√[(x+5)^2+y^2]d2=√[(x-5)^2+y^2]1)与两定圆外切,则P到两圆心的距离分别为d1=r+7,d2=
解法一:圆B:x²+y²+6x+8=0(x+3)²+y²=1圆B圆心坐标为B(-3,0),半径是1圆C:x²+y²-6x-72=0(x-3)
(1)两个定圆的圆心为F1(-5,0),F2(5,0),半径分别为7和1,设动圆圆心M(x,y),半径为r,则由条件,得 |MF1|=7+r,|MF2|=1+r,从而 |MF1|-|MF2|=6,由双
x+1=根号[(x-2)^2+y^2]整理得y^2=6x-3
依题意画出下图;设动圆圆心为(x,y)MF2-MF1=(r+4)-(r+1)=3∴√(x+5)²-y² -√(x-5)²+y