力位移曲线转换为应力应变曲线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:45:30
其中屈服强度,一般取为0.2%应变时的应力,如图,不同曲线的屈服强度不同.εp=ε-σ/E,其中E对于每条曲线都不同,即为屈服强度时曲线的斜率.以曲线4为例,即为黄线的斜率.而4上一点,这点斜线是平行
无机粒子表面与聚合物的结合部位有许多缺陷,这些缺陷的存在导致出先应力集中部位.如果过多的出先应力集中和强度薄弱环节,就会发生脆性断裂.
应力除以应变(曲线的斜率),如果大,刚度就大,如果小,刚度就小如果应力不变,应变可以变化很大而材料不破坏,则塑形大
弹性变形阶段:此时低碳钢拉伸曲线服从胡克定律,屈服阶段:低碳钢逐渐发生塑形的屈服现象,原理是低碳钢内部的位错之类的缺陷逐渐发生一定的滑移,拉伸过后可以观察到到滑移线.均匀塑性变形阶段:此时局部的缺陷滑
坐标的不同,应力与力的区别,应力=力/横截面面积应变与变形的区别,变形通常指位移,所以设初始长度为L.,终止长度为L,变形量=L-L.所以,应变=变形/初始长度,即(L-L.)/L
万能试验机有电脑控制,电脑会自己画出曲线,你所说的两个曲线是一回事,但是一般来说都叫:应力-应变曲线.
通常,是通过试验得到的.通常,不同材料的应力应变曲线都会有差别,相近的材料也会有差别,比如同样是钢,不同牌号弹塑性属性可能差别很多.再比如球墨铸铁,即使是相同的牌号,不同厂家调制的球铁材料性能曲线也会
选取hyperelastic,然后选择一些本构模型,在testdata栏中输入
这是现行的通用做法,应该是不会出问题的.不过用此法时推导真实应力的过程中假设结构体积不变,俺觉得是有问题的,如果考虑体积变化,则真实应力为:真实应力/工程应力=(1+工程应变)/(1+工程应变-2工程
理论上来讲,位移曲线的2次求导过后就是加速度曲线.但如果你不知道1.初速度(V)2.不规定初始位置以上2个条件不满足一个或者2个都不满足,一般就不能将加速度曲线转化为位移曲线
可以.力测试值对应面积换算为应力,对应的位移即是应变;这样就得到了应力-应变曲线;但应注明它的原始测试件截面面积,以便区分不同截面时的不同.再问:是板材试件拉伸的力-位移曲线,是个矩形截面,换算为应力
微机控制电液伺服万能试验机集电液伺服自动控制、自动测量、数据采集、屏幕显示、试验结果处理为一体,以油缸下置式主机为平台,配置进口油泵和电液伺服阀、机伺服控制器,实现多通道闭环控制,完成试验过程的全自动
找一台可以用引伸计控制的试验机自己做做就知道了.你论文的题目是什么?简单的说,应变指的不是试样的整体变形,而是指在引伸计范围内的形变,通过引伸计采集到得应变信号从而准确的得到弹性段变形的各参数,使用目
当应力低于σe时,线弹性变形阶段. 应力与试样的应变成正比,应力去除,变形消失.σe和σs之间,非线弹性变形阶段,仍属于弹性变形,但应力与试样的应变不是正比关系.σs时,屈服阶段(其实存在上下屈服极限
最明显的区别是:铸铁无屈服现象,低碳钢有
以单调拉伸为例,一般金属的曲线分如下阶段:1:线弹性2:非线性弹性3:波动4:屈服5:强化6:断裂其中3、4应力水平基本相当,对于脆性材料,4、5过程很短,而对于一些金属,如硬铝,没有明显的屈服过程
以钢筋的应力应变曲线为例,从原点到直线段端点为线弹性阶段,然后是一小段曲线达到屈服点,再进入一个屈服平台(应力变化较小,应变迅速加大),然后进入塑性阶段,塑性阶段开始应力应变均增加(强化阶段),取这一
这个很难说,要看你的材料是作什么用途的.首先是屈服极限,这个表明材料承受最大载荷的能力,就是σs,越高越好.还有就是延伸率,延伸率高的材料可以承受更大的塑性变形.应力应变曲线在屈服点以后的曲线如果是随
弹性模量E表示刚度,应该不是强度,是表示变形量与受力的关系.所以……供参考.再问:非常感谢您,那请问塑性变形时材料刚度在变小,而强度在増加是吗?刚度和强度是相反的两个概念吗,他们不都是表示抵抗变形能力
你说的这种情况是用桥式位移传感器来测位移(注意:不能用电阻应变片来测位移),通常的桥式传感器一个微应变对应1mm.