前提:q蕴涵p,q等值s,s等值t,t合取r:结论:p合取q合取s合取r的答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:08:22
前提:q蕴涵p,q等值s,s等值t,t合取r:结论:p合取q合取s合取r的答案
命题推理 前提:P->(Q->R),S->P,Q结论:S->R

附加前提证明法1S附加前提引入2S→P前提引入3P12假言推理4P→(Q→R)前提引入5Q→R34假言推理6Q前提引入7R56假言推理再问:3P12假言推理不懂啊附加前提法是怎么回事?再答:那你就需要

在自然推理系统中构造下面推理的证明:前提:p→r,q→s,p∧q,结论:r∧s

p^qprp^qqsrsr^s注:换行表示“推出”关系,分段表示上一段演绎结束

构造推理的证明.前提:q蕴含于p,q等值于s,s等值于t,t合取r.结论:p合取q合取s合取r

1>t合取r规则p;2》t规则p由1》化简;3》r规则p由1》化简;4》s等值于t规则p;5》t蕴含s规则t由4》等值6》s规则t由2》5》假言推论7》q等值s规则p8》s蕴含q规则t由7》等值9》q

构造下面推理的证明前提:p→(q→s),q,p∨┐r.结论:r→s实在是看不懂书上写的了.

关键就是把握:┐r∨p等价于r->p证明:(1)p∨┐r,题中假设(2)┐r∨p,(1)交换律(3)r->p,(2)等价变换(4)p->(q->s),题中假设(5)r->(q->s),(3)(4)三段

用推理规则证明】前提:p∨q,p->s,q->r 结论:s∨r

用反证法也就是归谬法.1┐(s∨r)否定前提引入2┐s∧┐r1置换3┐s2化简4p→s前提引入5┐p34拒取式6┐r2化简7q→r前提引入8┐q67拒取式9┐p∧┐q58合取10┐(p∨q)9置换11

《离散数学》证明题:证明R→S可从前提P→(Q→S),┐R∨P和Q推出.

前提引入,将R当做条件.R,并且┐R∨P,所以P,又因为P→(Q→S),所以(Q→S),因为Q,所以S得证.

q+r=p+s,p+r>q+s,s>p

q+r=p+s==>q+r+p=2p+sp+r>q+s==>2p+s>2q+s==>p>qr=p+s-q==>2r=p+r+s-q>q+s+s-q=2s==>r>s又s>p所以r>s>p>q

前提:(P→Q)∧(Q→S),(Q→W)∧(S→X) ,「(W∧X) 结论:「P

证明:(1)PP(附加前提)(2)P→QP(3)Q→SP(4)Q→WP(5)¬(W∧X)P(6)¬W∨¬XT(5)E(7)ST(1)(2)(3)I(8)S→XP(9)XT

离散数学题,数理逻辑 求高手答疑 前提:(p﹀q)->r, ﹁s﹀p, q 结论:s->r 不...

∧∨﹁前提:(p∨q)->r,﹁s∨p,q结论:s->r证明:1.q前提引入2.p∨q附加律3.(p∨q)->r前提引入4.r2.3.假言推理5.﹁s∨r附加律6.s->r蕴含等值式

S>P,P+R>Q+S,Q+R=P+S,

将s=Q+R-P代入不等式,得P>Q,由R=S+(P-Q)得R>S最后得:R>S>P>Q

mind sb's p's and q's

mindone'sP'sandQ's注意礼貌(polite,thankyou)

推理证明,前提,p->s.q->r.非r.p∨q结论s

百度搜索就找到了《离散数学》模拟试题(四)-mnst4

构建下面推理的证明 前提:p合取q,p蕴含非r,s蕴含t,非s蕴含r,非t 结论:q

p合取q应是p析取q吧.证明如下:1、p析取q前提2、p蕴含非r前提3、s蕴含t前提4、非s蕴含r前提5、非t前提6、非s35否定后件式7、r46肯定前件式8、非p27否定后件式9、q18否定肯定式

在命题逻辑中构造下面推理的证明 前提:p→s,q→r,┐r,p∨q,结论s

①{1}p→s②{2}q→r③{3}┐r④{4}p∨q/∴s⑤{2,3}┐q②③→-⑥{2,3,4}p④⑤∨-⑦{1,2,3,4}s①⑥证毕再问:和书上例题的格式不太一样啊,我一点都不会。举个例子,书

离散数学命题证明题 前提:p→s,q→r,p∨q,┘r 结论:r

题目错了,照这个题目证明只能得到s.如果结论是s才可能被证明.

证明 前提:p→(┐(r∧s)→┐q),p,┐s 结论:┐q

1)p→(┐(r∧s)→┐q)前提引入2)p前提引入3)┐(r∧s)→┐q1)2)假言推理4)┐s前提引入5)┐s∨┐r4)附加律6)┐(r∧s)5)置换7)┐q3)6)假言推理

前提:(p∨q)→(u∧s),(s∨t)→r 结论:p→r 怎么证明啊?

(1)pP(附加前提)(2)p∨qT(1)(3)(p∨q)→(u∧s)P(4)u∧sT(2)(3)I(5)sT(4)I(6)s∨tT(5)I(7)(s∨t)→rP(8)rT(6)(7)(9)p→rCP

急等:证明:P→┐ Q,┐P→R,R→┐ S=>S→ ┐Q

利用逆否命题与原命题等价来证:因为R→┐S,故S→┐R因为┐P→R,故┐R→P又有P→┐Q利用传递性,有:S→┐R→P→┐Q即:S→┐Q有不懂欢迎追问

急等:证明:P→┐ Q,P→R,R→┐ S=>S→ ┐Q

P→┐Q即┐PV┐Q.(1)┐P→R即PVR.(2)R→┐S即┐RV┐S.(3)结论的否定┐(S→┐Q)即┐(┐SV┐Q)即S.(4)Q.(5)(2)(3)消去得PV┐S.(6)(4)(6)消去得P.