利用特征值证明A 2E可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:19:58
利用特征值证明A 2E可逆
设A,B都是N阶矩阵,且A可逆,证明AB与BA有相同的特征值

A^-1表示A的逆,^表示后面的是指数.由A^-1ABA=BA可知AB与BA相似,故AB与BA有相同的特征值.

设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

n阶矩阵A满足A^2=A,求A的特征值?并证明E+A可逆?

A^2=A又Ax=YxA^2x=AYx=YAx=YAx=Y^2xA(Y^2-Y)x=0故特征值是0和1这里面Y表示什么自己应该知道吧可逆:主要证明|A+E|值不为零

n阶矩阵A,A^k=0,证E-A可逆,用特征值法证明.

先证A的特征值只有0;反证法:假设A有一个特征值t不等于0;那么,根据特征向量的定义,存在X不等于0,AX=tX;又A^K=0则0=(A^k)X=A^(k-1)(tX)=tA^(k-1)X=……=(t

设n阶方阵A的特征值为0,1,……,n-1,证明:A+E可逆

设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,

线性代数 矩阵可逆证明

E-AB可逆,则设其逆为C(E-AB)C=E->B(E-AB)CA=BA->BCA-BABCA-BA+E=E(左右两边多加了一个E)->(E-BA)BCA+(E-BA)=E->(E-BA)(BCA+E

线性代数,矩阵可逆证明

(A+E)A-(2A+2E)=-2E,得(A+E)(A-2E)=-2E得(A+E)(E-1/2A)=E故A+E可逆,且逆矩阵为(E-1/2A)

设A为可逆矩阵,λ是它的一个特征值,证明:λ≠0且λ-1是A-1的一个特征值.

AX=λXA^(-1)AX=λA^(-1)XX=λA^(-1)X(1/λ)X=A^(-1)X1/λ是A^(-1)的特征值

线性代数 设方阵A有一个特征值为2,证明矩阵A^2-2A不可逆

矩阵A^2-2A是A的多项式,特征值为f(m)=m的平方-2m,即f(2)=0为矩阵A^2-2A的特征值,(A^2-2A)x=mx,因为m=0,所以(A^2-2A)x=0,齐次方程要有非零解,即|(A

设R是可逆矩阵A的一个特征值,证明:det(A)/ R是A的伴随矩阵A*的一个特征值.

因为R是可逆矩阵A的一个特征值所以Ax=Rx两边左乘A*A*Ax=A*Rx即det(A)x=A*Rx那么A*x=det(A)/Rx所以det(A)/R是A的伴随矩阵A*的一个特征值

设m是可逆矩阵A的一个特征值,证明:det(A)/m是A的伴随矩阵A*的一个特征值

设x是A的属于特征值m的特征向量则Ax=mx.两边左乘A*得A*Ax=mA*x.由A*A=|A|E得|A|x=mA*x.再由A可逆,A的特征值都不等于0,所以有(|A|/m)x=A*x即|A|/m是A

线性代数 证明矩阵可逆

A(A-2E)+E=OA(A-2E)=-EA(2E-A)=E由逆矩阵的定义,矩阵A可逆,且其逆矩阵是2E-A

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中

矩阵可逆 与特征值的关系

A可逆的充分必要条件是A的特征值都不等于0.

证明:设λ是方阵A的特征值,证明(1) λ^2是A^2的特征值;(2)当A可逆 时,λ^-1是A^-1的特征值

(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值A^(-1)x=[A^(-1)(cx)]/c=[A^(-1)(Ax)

特征值特征向量证明问题

设A的若尔当标准形为J,A=X^(-1)JX,则J是上三角阵且J对角线元素是1,2...,n,从而|A+E|=|X||A+E||X^(-1)|=|J+E|,J+E显然也是上三角的,由上得J+E的对角元

怎么证明矩阵可逆?

如果一个方阵满秩,则可逆.存在一个方阵,使得AB=E,E为单位矩阵,则可逆.还有其他的一些方法,例如矩阵行列式值不为0等.

设σ是线性空间V上的可逆线性变换,证明:(1)σ的特征值一定不为零.

设A是线性空间V上的可逆线性变换σ的矩阵,则A是可逆矩阵,于是|A|不为零,而|A|等于矩阵A的所有特征值之积,所以矩阵A的所有特征值之积也不为0.所以A的所有特征值也不为0.A的特征值就是σ的特征值

特征值和可逆矩阵的关系

|A|=0说明A有特征值0,于是A的全部三个特征值为0,1,2则A^2的全部三个特征值为0,1,4,则-1不是A^2的特征值,于是|I+A^2|=-|-I-A^2|不等于零,于是A^2+I为可逆矩阵.