利用泰勒公式求下列数的近似值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:07:42
再问:请问你的qq号是多少啊?再答:sorry,qq好几年没有用了这题帮忙选为满意回答
三阶泰勒公式(1+x)^(1/2)=1+1/2x-1/2*4x^2+1*3/2*4*6x^3所以30^1/2=(1+29)^(1/2)30^1/2~=1+1/2*29-1/2*4*29+...~=约等
30=27+3,在x=27这一点展开就是再问:还是不懂再问:麻烦您写一下整个步骤再答:
当x很小时,(1+x)^(1/3)≈1+x/3³√30=³√(27×10/9)=3×(1+1/9)^(1/3)≈3×(1+1/27)≈3.11再答: 再答:
(30)^(1/3)=(3^3+3)^(1/3)=3*(1+1/9)^(1/3)再答:求采纳再问:真不知道哪像泰勒展开式。再问:那40^(1/3)呢再问:不过谢谢你,我知道刚才为什么没做出来了,忽略了
设f(x)=√x;由泰勒公式,在x=4处展开,f(x)=f(4)+f'(4)(x-4)+f''(4)(x-4)^2/2+.f(5)=f(4)+f'(4)(5-4)+f'(4)(5-4)^2/2+.即f
微分求近似值,精确度很低泰勒公式求近似值:需要精确到什么位置,都是可以的
⑴1.04×1.01=1.0*1.0=1.00⑵1.03×1.01=1.0*1.0=1.00⑶1.03×0.98=1.0*1.0=1.00⑷1.04×0.98=1.0*1.0=1.00⑸7÷1.02=
(1)(30)^1/3=(27+3)^1/3=[27(1+1/9)]^1/3=3(1+1/9)^1/3下面就可以用近似公式(1+x)^n≈1+x/n继续进行计算.误差也可用公式估计(见《高等数学》级数
够用就可,一般看已有的多项式的最高次数,在没有的情况下,均可以
lnx=ln1+1/1*(x-1)+(-1/1^2)/2*(x-1)^2+2/6*(x-1)^3x=1.2代入计算即可.ln1.2=0+0.2-0.5*0.04+1/3*0.008≈0.1827再问:
sinx=x^5/120-x^3/6+xx=18°=pi/10;sin18°的近似值=x^5/120-x^3/6+x=0.309016994374947sin18°的真值=0.309016994374
#include#includevoidmain(){doubleterm=1.0,e=1.0,eps=1e-05;inti=0;printf("inputeps1e-05:\n");scanf("%
我傻了.最后不是5 是2 楼主你担待点
有个公式,可以简单地套用它(1+x)^a=1+ax+a(a-1)x^2/2!+...(#)在这里(1+3/x)^(1/3)直接代入(#)式把(#)式的x用3/x替换即可=1+(1/3)*(3/x)+o
8.25²=68.0825所以√68
在泰勒公式里,x的适合范围是-1越接近两个边缘多项式的值自然和原式计算的值相差的较大.试把x值放接近0,答案会比较准确.再问:好像同济版六上面没说x的范围啊,只是提供误差计算范围。但是展开后多项式的值