利用正交变换将二次函数f=2x1x2 2x1x3 2x2x3化为标准型
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:12:03
实际上就是求矩阵A的特征值因为A中各行元素之和为3所以A*(1,1,1)T=3(1,1,1)T所以(1,1,1)T是属于特征值3的一个特征向量只能做到这里了还有什么条件吧再问:这就是全部的题目,让求的
因为标准型依赖的是变换矩阵也就是Q,标准型对应的矩阵不是唯一的,元素的位置可以互换,但是对应的Q就不一样了,所以再写出标准型时,是需要求出Q的若你还有不会的,我十分愿意和你探讨,
A=011101110A+E=111111111-->111000000对应方程x1+x2+x3=0(1,-1,0)^T显然是一个解与它正交的解有形式(1,1,x)^T代入方程x1+x2+x3=0确定
与A的秩有关!因为r(A)=1所以Ax=0的基础解系含3-1=2个向量即A的属于特征值0的线性无关的特征向量有2个所以A的特征值是3,0,0
由已知,f的矩阵A=20000101a与B=2000b000-1相似所以2+a=2+b-1且|A|=-2=|B|=-2b所以b=1,a=0.且A=200001010的特征值为2,1,-1(A-2E)x
f(x)=|x-2|-|x+1|,对于利用绝对值符号将分段函数改成非分段函数的解析式的题目,只需看分段的条件即f(x)=|x-a|+/-|x-b|中ab的值,若分段函数f(x)两端是常函数,则中间为减
二次型的矩阵A=2-20-21-20-20|A-xE|=r1+(1/2)(2-x)r2-r30(1-x)(2-x)/22(1-x)-21-x-20-2-x第1行提出(1-x),再按第1列展开=2乘(2
二次型的矩阵A=5-4-2-452-222|A-λE|=5-λ-4-2-45-λ2-222-λr1+2r3,r2-2r31-λ02(1-λ)01-λ-2(1-λ)-222-λc3-2c2+2c21-λ
二次型f的矩阵A=(400,031,013);则矩阵A的特征多项式为|A-kE|=|4-k00,03-k1,013-k|=-(4-k)^2(k-2);即A的特征值:k1=k2=4,k3=2;对于k1=
步骤1)写出二次型所对应的矩阵A2)算出A的特征值,λ1=λ2=1,λ3=103)算出对应得特征向量(1,1,0)T;(1,0,2)T(-2,2,1)T4)P=[(1,1,0)T;(1,0,2)T;(
二次型的矩阵A=200032023|A-λE|=2-λ0003-λ2023-λ=(2-λ)[(3-λ)^2-2^2]=(1-λ)(2-λ)(5-λ).所以A的特征值为1,2,5.A-E=1000220
二次型的矩阵A=221212122|A-λE|=2-λ2121-λ2122-λc1+c2+c3提出(5-λ)12111-λ2122-λr2-r1,r3-r11210-1-λ1001-λ所以|A-λE|
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3对应的实对称矩阵为A=[(0,1,1)T,(1,0,1)T,(1,1,0)T];下面将其对角化:先求A的特征值,由|kE-A|=|(k,-1,
由已知,A的特征值为1,1,0且α3=(√2/2,0,√2/2)^T是A的属于特征值0的特征向量.求出与α3正交的两个线性无关的向量α1,α2,将其正交化单位化,并构成Q的1,2列则有Q^-1AQ=d
由已知,A的特征值为1,1,0且(√2/2,0,√2/2)是属于特征值0的特征向量由于实对称矩阵属于不同特征值的特征向量正交所以属于特征值1的特征向量(x1,x2,x3)满足√2/2x1+√2/2x3
二次型f(x1,x2,x3)=x^TAx在正交变换x=Qy下的标准型为y1^2+y2^2则A的特征值为1,1,0对应的特征向量即Q的列向量所以第3列(√2/2,0,√2/2)^T是属于特征值0的特征向
二次型的矩阵A=200032023对特征值2,A-2E=000012021化为000010001基础解系为(1,0,0)'.再问:请问化为000010001后是因为右下角是二阶单位阵,所以在左上角添一
二次型的矩阵A=200032023|A-λE|=2-λ0003-λ2023-λ=(2-λ)[(3-λ)^2-2^2]=(1-λ)(2-λ)(5-λ).所以A的特征值为1,2,5.(A-E)X=0的基础
秩为1,A有一个二重特征值λ1=λ2=0A中行元素之和为3,A的另一个特征值λ3=3标准型为:diag(0,0,3)再问:为什么行元素之和为3,A的另一个特征值就是3?行元素之和的意思是不是A每一行的
1112124|A-λE|=11-λ12124-λ=(11-λ)(4-λ)-12^2=λ^2-15λ-100=(λ-20)(λ+5).A的特征值为λ1=20,λ2=-5.A-20E=-912-->3-