利用曲线积分求椭圆x=2cost,y=3sint所围图形的面积的表达式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:14:52
半椭圆y=3√(1-x^2/4)椭圆周长=2×∫√(1+y′²)dxmatlab>>symsx>>y=3*(1-x^2/4)^(1/2);>>y1=diff(y,x);>>f=(1+y1^2
可以求得原函数U(x,y)=x^3/3+x^2*y-x*y^2-y^3/3+C.分别代入(2,0)跟(-2,0),作差得到结果为-(16/3),如楼主所言.
(1)设√X=t,x=t^2,dx=dt^2=2tdt∫cos√Xdx=∫cost×2tdt分部积分:原式=2∫tdsint=2t×sint-2∫sintdt=2t×sint+2cost=2√Xsin
x=2cosθ,y=sinθ,dx=-2sinθ,dy=cosθ,∴dy/dx=-(cotθ)/2=1/2,∴cotθ=-1,θ=(k-1/4)π,k∈Z,∴切点为(√2,-(√2)/2),或(-√2
∫cos²x/(1+cosx)dx=∫(cos²x-1+1)/(1+cosx)dx=∫(cosx-1)dx+∫1/(1+cosx)dx=sinx-x+∫1/[2cos²(
∫cos2x/(sinx*cosx)dx=∫cos2x/(1/2*sin2x)dx=4∫cos2x/(sin2x)dx=4∫csc2x*cot2xdx=-2∫csc2x*cot2xd(2x)=-2cs
1/3sin(3x+2)郁闷,这是最简单的积分啊看好了,设3x+2=u则3dx=du代入积分∫cos(3x+2)dx=∫cosu(1/3du)=1/3sinu=1/3sin(3x+2)OK?
原式等于:∫[1-cos^2(x)]/cos^3(x)dx=∫dx/cos^3(x)-∫dx/cos(x)=(secxtanx+ln|secx+tanx|)/2-ln|secx+tanx|+C
题目有点问题,x²+y²=1与x+y=1围成的区域不是封闭区域.题中也没有规限z的范围再问:是xz=1打错了再答:
原式=∫xsec²xdx=∫xdtanx=xtanx-∫tanxdx=xtanx-∫sinx/cosxdx=xtanx+∫dcosx/cosx=xtanx+ln|cosx|+C
是星形线那道么?因为你参考的答案是错的..我的参考书上面就写的是1/2∮xdy-ydx
(x^2+2xy-y^2)dx+(x^2-2xy-y^2)dyP=(x^2+2xy-y^2)Q=(x^2-2xy-y^2)Py=Qx,积分与路径无关z(x,y)=∫(x^2+2xy-y^2)dx+(x
cos²x=(1+cos2x)/2所以∫cos²xdx=∫1/2dx+1/2*∫cos2xdx=x/2+1/4*∫cos2xd(2x)=x/2+1/4*sin2x=(2x+sin2
x²+y²=2axx²-2ax+a²+y²=a²(x-a)²+y²=a²此为一个圆,它的半径是a,所以所围成的
直线y=(1/2)x斜率1/2则切线也是一样.dy/dx=1/2dsin@/d2cos@=cos@/(-2sin@)=1/2->>ctg@=-1@=135°或者-45°(315°)点为(根号2,-根号
∫cosx/(2-cos^2x)dx=∫d(sinx)/(1+sin^2x)=arctan(sinx)+c
把它展开就为cos^2x+x^3cos^2x的定积分,因为后一部分为奇函数直接消掉积分出来就是0,则只有cos^2x的积分,化成(cos2x+1)/2的积分,为偶函数,直接就是0到π上的积分的两倍,解