利用拉格朗日中值定理证明恒等式arctanx arccotx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:21:44
证明如下:如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意图令f(x)为y,所以该公式可写成△y=f'(x
设F(x)=xf(x),则F(0)=0=F(1),且F'(x)=f'(x)x+f(x),故在(0,1)上必存在一点ξ使F'(ξ)=0,则F'(ξ)=f'(ξ)ξ+f(ξ)=0,则有f'(ξ)=-f(ξ
ln(1+x)-ln(1)=[(1+x)-1]*(1/x')(1
设f(x)=x-arctanx根据拉格朗日中值定理则存在00此函数为增函数f(0)=0从而当x>0时,x>arctanx
f(x)=sin(x)端点x和ysinx-siny=cos(ξ)*(x-y)≤x-y
证明设f(x)=x5+x-1,则f(x)是[0,+∞)内的连续函数.因为f(0)=-1,f(1)=1,f(0)f(1)
f(x)=arcsinx+arccosx在[-1,1]连续,在(-1,1)可导,由拉格朗日中值定理一定在[-1,1]中找到一个c点使得f(c)=[f(1)-f(-1)]/(1-(-1))又这个式子可以
构造函数,利用拉格朗日定理证明 过程如下图: 再问:题目要求用中值定理证明再答:开始没注意,后来改了
再问:再问:�������֤������ô��ѽ再答:再问:再问:再答:再问:��再问:再答:
设f(x)=x^n,则f'(x)=nx^(n-1),对f(x)在区间[b,a]上应用拉格朗日中值定理得,a^n-b^n=n•c^(n-1)•(a-b),其中a>c>b>0,故n
能啊,我学过的是用柯西中值定理证明的泰勒公式,拉格朗日和柯西中值定理等价啊再问:�ܸ�һ�¾�������再答:����,��ѧ����,������ѧ�����Ľ̲���Ӧ���а�,������Ӵ
设f(x)=sinx则f'(x)=cosx在x与y之间存在ξ,使得sinx-siny=f'(ξ)(x-y)=cosξ(x-y)所以,|sinx-siny|=|cosξ(x-y)|≤|x-y|
另f(x)=arctanx,则f'(x)=1/(1+x^2)由拉格朗日中值定理有存在实数c,使得f(x)-f(x0)=f'(c)(x-x0)再此取x0=0,则f(0)=0应用上面的等式,便有arcta
证明:令f(x)=lnx(x>1)lnx=lnx-ln1=f'(1+θx)(x-1)=(x-1)/(1+θx),θ∈(0,1)...拉格朗日中值定理∴1+θx∈(1,1+x)∴1-1/x
罗尔定理需两端为零,这么设两端点纵坐标之差为零,满足罗尔定理要求.再问:柯西中值定理分子和分母那两个ε是相同的吗?就是存在的那个ε是同一个点上的?还是两个ε的取值是不同的?只是说明ε点的存在性,表示两
a^2·sin2B+b^2·sin2A=4R^2((sinA)^2sin2B+(sinB)^2sin2A)=8R^2sinAsinB(sinAcosB+cosBsinA)=8R^2sinAsinBsi
定义如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意图令f(x)为y,所以该公式可写成△y=f'(x+θ△
先说证明不等式先设一个跟题设有关的函数然后把拉格朗日中值定理公式表示出来然后根据选取的那个值一定在题设的定义域内为限制条件证明等式一般就是把把拉格朗日中值定理中的函数设成与题设有关的函数即可
左边那部分求导,等于零,带个数得出二分之派再问: