利用函数的单调性 证明下列不等式 e的x次方>1 x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:53:35
化成X的平方小于X,变成两个函数,然后,借助图像分析单调性再问:谢谢你啦,可是老师要求要用导数做再答:设f(x)=x-x^2,f`(x)=1-2x.当x=1/2时,f`(x)=0,f(1/2)为一个极
令任意的x10,则,证明f(x2)-f(x1)的符号为正还是为负,符号为正则是单调递增的,符号为负则是单调递减的.再问:能具体点么?再答:令任意的x10,则,1:f(x2)-f(x1)>=0,f(x)
解题思路:灵活应用已知条件,结合单调性的定义即可证明解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com
(1)在给定区间上任取两值且x1>x2(2)计算y1-y2(3)因式分解,判定符号.(4)结论
首先f(x)=sinx在[0,π/2]递增g(x)=x在[0,π/2]也增有f(0)=0=g(0)接下在只要重点证两函数增的速率即比较斜率f'(x)=cosx在[0,π/2]恒有0再问:0到,π是减函
用导数:f`(x)表示f(x)的导数.1.设f(x)=sinx-x,f`(x)=cosx-1,当x∈(0,π)时,f`(x)
第一个题,解法一,用泰勒公式,直接得到!根据泰勒公式,e^x=1+x+1/2x^2+1/3x^3+……这是第一种解法,前提是你懂高数.解法二,设y=e^x-x-1,两边求导,导函数为y'=e^x-1,
设函数f(x)=arctanx,g(x)=x,x>0f(0)=0,g(0)=0f'(x)=1/(1+x²)>0,g'(x)=1>0f'(x)-g'(x)=1/(1+x²)-1=-x
1.设在区间[-3,正无穷]上的2个任意实数X1,X2,且x1>x2≥3,所以f(x1)-f(x2)=X1^2+6X1-X2^2-6X2,化简得:f(x1)-f(x2)=(X1-X2)×(X1+X2)
再答:呵呵
首先,证明函数的单调性,设x2>x1>4f1(x)=2^xf1(x2)-f1(x1)=2^x2-2^x1=2^x1(2^x2/2^x1-1)=2^x1*[2^(x2-x1)-1]因为x2>x1>4,所
x>0要证lnX1X
设f(x)=e^x-1-x求导df/dx=e^x-1当x=0时f取到最小值0因为x不等于0,所以f>0,所以e^x>1+x,x不等于0成立
再问:不好意思啊,那个图片看得不太清再答:再问:要不你还是一题一题的拍给我吧,第二张还是看的不清再问:麻烦你咯再答:
(1)构造函数f(t)=(lnt)/t,则f'(t)=(1-lnt)/t^2.f'(t)>0→0
设f(x)=2√x+1/x-3x>1f′(x)=1/√x-1/x²=1/√x(1-1/x^(3/2))>0f(x)在[1,+∞)单调增加.所以当x>1时,f(x)>f(1)=0即2√x+1/
函数在(0,1/2)是单调递增,在(1/2,1)是单调递减因此当x=0,或x=1时有最小值f(x)>f(0)=0也就是X-X^2>0