利用二重积分求由抛物面z=x² 2y²和z=6-2x²-y²的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:08:11
这在第一褂限内由z=0得x(max)=2,所以体积=积分号(0,2)dx积分号(0,4-2x)dy积分号(0,4-x^2)dz=积分号(0,2)(16-8x-4x^2加2x^3)dx=32-16-32
注意一下积分的上下限就ok了,体积直接是三重积分dxdydz过程见图片,结果是1/36,不清楚追问撒~再问:能用二重积分算一下嘛。再答:其实积分一次之后就成二重积分了呃...无非多一句解释
空间点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)设旋转抛物面z=x^2+y^2上的点为(x,y,z),则到平面x+y+z
图老是传不上,传得上的话就好,传不上追问我再问:答案对了,我想问下为什么积分区间是0到4?那个图形不是一个椭圆抛物面么,那x和y的负半轴应该也要积分啊再答:看到我画的积分区域没,是根据坐标轴是0且x=
答:s=∫∫u(x,y,z)sqrt(1+(dz/dx)^2+(dz/dy)^2)dxdy=∫∫1/2(x^2+y^2)sqrt(1+x^2+y^2)dxdy=∫∫1/2r^2sqrt(1+r^2)r
借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们
Ω的体积=∫dx∫(x²+3y²)dy=∫(2x³-x^4-x^6)dx=1/2-1/5-1/7=11/70
是一个高为1的碗形旋转抛物面,底圆半径为1,转换成极坐标,V=4∫[0,π/2]dθ∫[0,1][(rcosθ)^2+(rsinθ)^2]rdr=4∫[0,π/2]dθ∫[0,1]r^3dr=4∫[0
z=10-3x^2-3y^2与z=4联立,消去z,得D:x^2+y^2=2.V=∫∫(10-3x^2-3y^2-4)dxdy=3∫dt∫
我认为应该是5/6啊就是那个积分区间的选择啊我认为应该把曲线投影到xoy平面上啊就是你说的z=0的平面上啊这是我自己的看法啊
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
所求体积=∫dx∫(1-x-y)dy=∫[(1-x)²/2]dx=(1/2)(1/3)=1/6.
二重积分的几何意义是曲顶柱体的体积:曲顶柱体的顶面是:z=x^2+y^2,底面区域D是xOy面内由x轴、y轴、x+y=1所围V=∫∫(x^2+y^2)dxdy=∫[0,1]∫[0,1](x^2+y^2
体积=∫∫D(x²+y²)dxdy=∫∫D(p²)pdpdθ=∫(0,2π)dθ∫(0,√a)p³dp=1/4∫(0,2π)p^4|(0,√a)dθ=1/4∫(
两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2体积V=∫∫(D)[(6-2x^2-y^2)-(x^2+2y^2)]dxdy用极坐标=
楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2
面积=∫∫D√1+4x²+4y²dxdy=∫∫D√1+4p²pdpdθ=∫(0,2π)dθ∫(0,√2)√1+4p²pdp=π/4∫(0,√2)√1+4p