利用limf(x)=A f(x)=A 无穷小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:39:47
利用limf(x)=A f(x)=A 无穷小
lim(f(x))^(n+m)=(limf(x))^n+ (limf(x))^m.有这个公式吗?

首先,g(x)=x^a是连续函数,即lim[g(x),x→a]=g(a)所以lim[f(x)^a]=[limf(x)]^a,注意a的位置而z^(m+n)=z^m·z^n,幂指数性质.所以lim[f(x

f(x)在(-∞,+∞)内有三阶导数,x→∞时,limf(x),limf'(x),limf"(x)存在,且,limf"'

假设limf'(x)=A≠0,不妨设A>0由保号性得,对于存在x0>0使得x>x0时f'(x)>A/2f(x)>f(x0)+(A/2)(x-x0)>M则x>|M-f(x0)|/(A/2)所以x>max

limf(x)+limg(x)和limf(x)×limg(x)里面的limf(x)和limg(x)分别求极限吗?

不可以,因为这样破坏了X的结构.必须先把g(x)和f(x)弄在一起,然后再化简到上下0/0再用罗比达法则

高数求极限有limf(x)=limf'(x)这个公式吗?

没有...应该是lim[f(x)/g(x)]=lim[f'(x)/g'(x)]注:g(x)和g'(x)都不为0

证明lim[f(x)^g(x)]=[limf(x)]^lim[g(x)]

http://hi.baidu.com/zjhz8899/album/item/358d923fc492f21071cf6c01.html

设函数f(x)在点x.处可导,试利用导数的定义确定limf(3x.-2x)-f(x.)/x-x.的极限

f(3x.-2x)-f(x.)对x求导得-2f'(3x.-2x)x-x.对x求导得1因此limf(3x.-2x)-f(x.)/x-x.=lim-2f'(3x.-2x)/1=lim-2f'(3x.-2x

f(x)在x=0左右极限存在,下列不正确的 a.x->0+ limf(x) = x->0- limf(-x) b.x->

D不对吧,虽然左右极限存在,但是函数在那一点的极限不一定存在,除非左极限等于右极限再问:有什么依据吗?还是具体的例子再答:这个是极限的定义啊你不会不知道吧再问:x->0+limf(x)=x->0-li

证明lim[f(x)+g(x)]=limf(x)+limg(x)

证:令limf(x)=Alimg(x)=B所以f(x)=A+@g(x)=B+@,@为无穷小lim[f(x)+g(x)]=lim[A+@+B+@]=A+B而limf(x)+limg(x)=A+Blim[

高等数学题:limf(x)=A limg(x)=B 求证lim[f(x)g(x)]=limf(x)limg(x)

因为limf(x)=Alimg(x)=B所以对任意e>0,存在正数X,使得x>X时,有|f(x)-A|X时,有|f(x)g(x)-AB|=|f(x)g(x)-f(x)B+f(x)B-AB|=|f(x)

若f(x)与g(x)可导,limf(x)=limg(x)=0,且limf(x)/g(x)=A,则

选C.再问:请解释一下理由好吗再答:选A。看错了。如果是无穷比无穷型选C。洛必达法则0比0型证明你们书上应该有的,这两个极限相同,所以只要有一个存在,另一个一定也存在且相等。再问:可答案是C再答:选C

高数:如果limf(x)*g(x),如果limg(x)=a,那么limf(x)*g(x)=limf(x)*a吗?

不能一定要f(x),g(x)的极限都存在时才可以用举个反例:f(x)=x,g(x)=1/x明显limg(x)=0但limf(x)*g(x)=lim1=1≠limg(x)*limf(x)=0有不懂欢迎追

设f(x)=1/x,则limf(x)-f(a)/x-a等于

lim(x→a)f(x)-f(a)/x-a=f'(a)f(x)=1/xf'(x)=-1/x^2f'(a)=-1/a^2再问:第一步我懂了...最后那两个怎么得出来的?f'(x)和f'(a)再答:f'(

求极限f(x)=xln(2-x)+3x的平方-2limf(x),则limf(x)=

由题设条件可知limf(x)存在,不妨设limf(x)=A,则f(x)=xln(2-x)+3x^2-2A注意到常数的极限是它本身,所以对上式取极限可得A=limf(x)=1*0+3-2A解得limf(

当 x->0 若 limf(x)=0 且 lim(f(2x)-f(x))/x=0 证明:limf(x)/x=0

lim(f(2x)-f(x))/x=0所以对于任意ε,存在δ,-δ

limf(x)=|A|,证明lim|f(x)|=|A|

由lim(x→a)f(x)=|A|,对于任意的ε>0,存在δ>0,当0<|x-a|<δ时,恒有|f(x)-|A||<ε.所以||f(x)|-|A||≤|f(x)-|A||<ε,当0<|x-a|<δ时,

极限的问题limf(x)=a,limg(x)=∞,求limf(x)^g(x)的值?书上说若a>1,limf(x)^g(x

a=1的情况是很特殊的,情况很多,比如大家知道的x→0时(1+x)^(1/x)→e,一般而言,会把:"1^∞”这种形式的极限式叫做“未定型”.用专门的技巧来计算他的极限再问:为什么大于1可直接代入呢?

limf(g(x))=f(limg(x))证明

这是极限四则运算法则和复合运算规则要求limg(x)和limf(g(x))均存在即可再问:大神,能细证吗?老师上课时说过这是公式成立条件他说定义法可证明啊再答:哥们,这是高等数学中的定理就连考研数学也

设limf(x)=0请证明limf(x)sinx=0 x→x0 x→x0

limf(x)sinx=limf(x)*limsinx=0*0=0再问:limsinx区域值不是(-1,1)再答:x->0时,sinx->0

高数 证明limf(x)=A【x趋于无穷大】与limf(x)=limf(x)=A【x分别趋于正无穷与负无穷】是充要条件

必要性:因为limf(x)=A【x趋于无穷大】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│

如果函数f(x)在(a,+∞)内可导,且limf(x)存在,证明:limf'(x)=0

在[x,x+1]上,用拉格朗日中值定理f(x+1)-f(x)=f'(ξ)*1x=lim(x->+∞)f'(ξ)=lim(ξ->+∞)f'(ξ)lim(x->+∞)f'(x)=0再问:lim【f(x+1