判断级数(-n)^n 1*2^n^2 n!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:00:27
判断级数(-n)^n 1*2^n^2 n!
判断级数 ∑ (sin n)/n^2的敛散性

很简单(sinn)/n^2≤1/n^2因为|sinn|≤1∑1/n^2绝对收敛,所以原级数也绝对收敛

∑(2^n-1)/3^n判断级数收敛性

收敛.∑2^n/3^n是公比为2/3的等比级数,收敛.∑1/3^n是公比为1/3的等比级数,收敛.所以,原级数收敛.

判断级数n^2/(2+1/n)^n的敛散性

用根值判别法:lim(An)^1/n=limn^(2/n)/(2+1/n)=1/2

怎么判断级数 n/2n-1 的敛散性

Un=n/(2n-1)lim(n→∞)Un=(1/n)/[2-(1/n)]=1/2即n→∞时数列有极限1/2所以级数n/(2n-1)收敛您的采纳是我前进的动力~

高数题,级数部分.1.判断敛散性∑n=1到无穷,n/n^2-2

从第二项开始,n/(n²-2)>1/n,从1/n发散可以知道该数列发散

判断级数∑3^n/n!敛散性

收敛,可用比值判别法.经济数学团队帮你解答.请及时评价.

级数敛散性判断求和[(-1)^(n+1)]*(2n-1)!/(2n)!敛散性?如何判断?

∵(2n-1)!/(2n)!>[(2n-1)!/(2n)!]·(2n+1)/(2n+2)=(2n+1)!/(2n+2)!∴(2n-1)!/(2n)!单调递减由斯特林公式n!~[√(2πn)](n/e)

判断此级数的敛散性:(n1-无穷)(-1)的n次方*根号下(n-根号n)-根号n 答案是发散.具体如何判断!

(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2

如何判断级数√(n+2)-2√(n+1)+√n的收敛性?

an=√(n+2)-2√(n+1)+√n=[√(n+2)-√(n+1)]-[√(n+1)-√n]=(分子有理化)1/[√(n+2)+√(n+1)]-1/[√(n+1)+√n].可令bn=1/[√(n+

判断级数收敛性2^n*n!/n^n

用根值派别法lim开n次方(u(n))=lim(2/n)开n次方(n!)=0无穷大

判断级数收敛性1/n^2-Inn

比较无穷小的阶1/n^21/(n^2-lnn)为同阶无穷小所以原级数与1/n^2敛散性相同.收敛

(2^n*n!)/n^n级数级数收敛性

收敛.用比值判别法.

判断级数∑2^n /n^n (n=1到∞)的敛散性

根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散

判断级数的敛散性∑ (∞,n=1)2^n * /n^n

只需要看后一项与前一项比值【2^n*n!/n^n】/【2^(n-1)*(n-1)!/(n-1)^(n-1)】=2n*(n-1)^(n-1)/n^n=2(n-1)^(n-1)/n^(n-1)=2【(n-

判断级数(e^n)*(n!)/(n^n)的敛散性

比值法: 发散我发现网上已经有很多回答了http://iask.sina.com.cn/b/14827620.htmlhttp://learning.wenda.sogou.com/ques

判断级数 3^n*n!/n^n 的敛散性

对于这个级数,首先观察进行初步估计;可以尝试采用夹逼准则,发现没有办法计算.我们发现用an+1/an可以消去很多项,使得计算成为可能.那我们便作商,进行比值判别法.an+1/an=3[n/(n+1)]

判断正项级数∑2∧n×n!/n∧n的敛散性

后项比前项=[2^(n+1)×(n+1)!/(n+1)^(n+1)]/2^(n)×(n)!/(n)^(n)]=2/(1+1/n)^n趋于2/e

判断级数(n!)^2/2n^2收敛性

用比值审敛法,为了网页显示方便,记J=级数的第n项,K=级数的第n+1项,那么有:当n→+∞时:lim(K/J)=(n+1)²[n/(n+1)]²=n²=∞所以该级数是发