判断∑7^n (6^n-5^n)的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:50:50
判断∑7^n (6^n-5^n)的敛散性
判断级数∑3^n/n!敛散性

收敛,可用比值判别法.经济数学团队帮你解答.请及时评价.

n

mile意思是英里.1mile=5280英尺=63360英寸=1609.344米所以nmile=1609.344×n(m)10nmile=16093.44m

3n²-n=1 求6n³+7n²-5n+2014

已知:3n²-n=16n³+7n²-5n+2014=6n³-2n²+9n²-5n+2014=2n(3n²-n)+9n²-

判断级数收敛性2^n*n!/n^n

用根值派别法lim开n次方(u(n))=lim(2/n)开n次方(n!)=0无穷大

判断幂级数无穷∑n=1 【((-3)^n+5^n)/n】*X^n的收敛半径和收敛区域

设an=【((-3)^n+5^n)/n】则收敛半径=an/an+1=1/5x=1/5同1/n比较发散x=-1/5莱布尼茨判别发收敛

微积分 判断级数∑(n=1,∞)n^n/3^n*n!的收敛性

达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:

M=(N-1)×1+(N-2)×2+(N-3)×4+(N-4)×8+(N-5)×16+(N-6)×32+(N-7)×64

M=(N-1)×1+(N-2)×2+(N-3)×4+(N-4)×8+(N-5)×16+(N-6)×32+(N-7)×64+...(N-n-1)×2n……①2M=(N-1)×2+(N-2)×4+(N-3

判断级数 ∑ (∝ n=1) 3^n*n!/n^n的敛散性

比值法,U(n+1)/Un=3/[(1+1/n)^n]→3/e>1(n→∞),所以级数发散

判断级数∑2^n /n^n (n=1到∞)的敛散性

根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散

判断级数的敛散性∑ (∞,n=1)2^n * /n^n

只需要看后一项与前一项比值【2^n*n!/n^n】/【2^(n-1)*(n-1)!/(n-1)^(n-1)】=2n*(n-1)^(n-1)/n^n=2(n-1)^(n-1)/n^(n-1)=2【(n-

判断级数∑(n!/n^n)的敛散性

本题直接利用达朗贝尔判别法可得级数收敛

判断级数(e^n)*(n!)/(n^n)的敛散性

比值法: 发散我发现网上已经有很多回答了http://iask.sina.com.cn/b/14827620.htmlhttp://learning.wenda.sogou.com/ques

判断级数 3^n*n!/n^n 的敛散性

对于这个级数,首先观察进行初步估计;可以尝试采用夹逼准则,发现没有办法计算.我们发现用an+1/an可以消去很多项,使得计算成为可能.那我们便作商,进行比值判别法.an+1/an=3[n/(n+1)]

判断级数敛散性∑(n=1到∞)(n+1/n)/(n+1/n)^n

(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?

判断正项级数∑2∧n×n!/n∧n的敛散性

后项比前项=[2^(n+1)×(n+1)!/(n+1)^(n+1)]/2^(n)×(n)!/(n)^(n)]=2/(1+1/n)^n趋于2/e

Sn=n(n+2)(n+4)的分项等于1/6[n(n+2)(n+4)(n+5)-(n-1)n(n+2)(n+4)]吗?

等于呀,你把后面的算式一道前面来n(n+2)(n+4)+1/6)(n-1)n(n+2)(n+4)=n(n+2)(n+4)[1+1/6(n-1)]=1/6n(n+2)(n+4)(n+5)

已知888个连续正整数之和:n+(n+1)+(n+2)+(n+3)+(n+4)+(n+5)+(n+6)+(n+7)+··

n+(n+1)+(n+2)+(n+3)+(n+4)+(n+5)+(n+6)+(n+7)+···+(n+887)=888n+1+2+3+...+887=888n+443*888+444=444*(2n+

判断8/n+5n+6的收敛性

若是y=(8/n^2)+5n+6,则n->∞时,y->∞,不收敛若是y=8/(n^2+5n+6),则n->∞时,y->0,即收敛于0

求证:对于任意自然数n代数式n(n+7)-n(n-5)+6的值都能被6整除.

n(n+7)-n(n-5)+6展开得到n²+7n-n²+5n+6=12n+6=(2n+1)*6很显然可以判定结果!