判定下列级数的发散和收敛性的题型

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:19:45
判定下列级数的发散和收敛性的题型
根据级数收敛与发散的定义判定级数的收敛性

设an=√(1+n)-√n=1/(√(1+n)+√n)所以lim(an/(1/√n)]=lim[√n/(√(1+n)+√n)]=lim1/[(√1+(1/n))+1]=1/2所以an与1/√n有相同的

第十一章 无穷级数 1.用比较判别法或起极限形式判定下列级数的收敛性; 注:(∑上面有个无穷大下面有个n

教学目的和要求:高等数学是高等院校大部分专业的一门重要基础理论课,是深入学习专业课程的必备基础.随着数学在各学科中的应用日夜广泛,作为地理、环科、心理等专业的学生无论将来从事科研工作还是教学工作,都应

级数判断收敛性为什么这句话是错误的!不是收敛,发散的和或者发散,发散的和都位发散吗?那应该反过来也该是收敛和收敛才对啊

这个命题的逆命题是成立的但是由和是收敛的无法判断每个都是收敛的还有可能两个级数都是发散的,但是他们的和收敛

利用等比级数和调和级数的收敛与发散性质以及数列的收敛性质,判断下列级数的收敛性

1/2^n由等比级数可知收敛于1;而1/3n发散收敛级数加上发散级数为发散级数

微积分问题,判定下列级数的收敛性,

拆分成两个数列=Σ(ln2/2)^n+Σ(1/3)^n利用公比绝对值小于1的几何级数收敛和收敛级数+收敛级数还是得到收敛级数第一个02所以0

.根据级数收敛与发散的定义判定下列级数的收敛性

sin∏/6+sin(2∏)/6+…….+sin(n∏)/6+…….是发散的,因为通项绝对值的极限不是0,不满足收敛的必要条件,所以直接得出结论:发散!1/3+1/3^(1/2)+1/3^(1/3)+

如何证明下列级数的收敛性

因为是正项级数!我们可以用根式判别法来做!令Un=(n^n)/n!那么,(n)√Un=(n)√[(n^n)/n!]=n/(n)√(n!)>1所以,该级数发散!这里,(n)√Un是表示Un的开n次方根!

判别级数的收敛性

1、级数和性质:2个收敛级数,其和收敛.2个等比数列,当然分别收敛.2、根据莱布尼兹交错级数收敛条件:1、An+1小于等于An2、An趋于0,那么此级数收敛.属于条件收敛,因为加绝对值以后,此级数大于

用3个方法判定级数的收敛性

比较判别法就行啊,你靠楼上的式子sinπ/2^n~π/2^n而π/2^n这个级数是收敛的,所以题目中的式子就是收敛的.

根据级数收敛与发散的定义判别此题级数的收敛性

这个级数是发散的.经济数学团队帮你解答.请及时评价.再问:再问:请问,这个题目再答:有问题请开新提问。一是尊重答题人的劳动,二是可以有更多的人来帮你。再问:我已经提问了再问:但是没人答再答:有时候需要

用比较判别法判定级数的收敛性

第一题,通项1/lnn>1/n,由于调和级数1/n发散,根据比较审敛发,级数1/lnn发散.第二题都不用比较审敛法,通项[n/(2n+1)]^2当n趋于无穷时极限不等于0,根据级数收敛的必要条件,该级

用极限审敛法判定下列级数的收敛性

再问:老师~第五题的极值趋近无穷大怎么得出来的啊啊再答:再问:谢谢老师的解答!谢谢

用极限审敛法判定下列级数的收敛性:(n+1)/(n^2+1)

 亲,记得采纳哦.再问:1/(n+1)*(n+4)呢?再答:一样的,发散。方法同上,乘以n取极限,如果极限>0或为正无穷大,那么就发散。再问:这个应该是收敛吧!1/(n+1)*(n+4)乘上

.用比值审敛法判定下列级数的收敛性

(2•n^n)/(n+1)^n=2/(1+1/n)^n(分子,分母同除以n^n),而(1+1/n)^n是单调递增有界数列,极限是e(n趋于无穷时)

判定无穷级数的收敛性.

一般项的绝对值