判别1 根号2的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:57:03
判别1 根号2的敛散性
判别级数∑(n+1)/2^n的敛散性

利用比值判别法可判别该级数收敛.为求和,作幂级数   f(x)=∑{n>=0}(n+1)x^n,|x|=0}(n+1)∫[0,x](t^n)dt  =∑{n>=0}x^(n+1)  =1/(1-x)-

利用比值判别法判别级数∑(n-1)!/3^n的敛散性

un=(n-1)!/3^nun+1=n!/3^(n+1)所以lim(n->∞)un+1/un=lim(n->∞)[n!/3^(n+1)]/(n-1)!/3^n=lim(n->∞)n/3=∞所以发散.

判别下列正项级数的敛散性:1.∑[ln(n+2)-ln(n)] 2.∑(1/(积分1->n 根号(1+4^4)dx))

1、通项an=ln【(n+2)/n】=ln(1+2/n)等价于2/n,当n趋于无穷时,因此级数发散.2、积分函数是x^4吗?通项的分母>积分(从1到n)x^2dx=(n^3-1)/3,因此通项2时,故

判别级数∑(n=1,∝) sin^n/n*根号下n的敛散性,

考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下

莱布尼茨判别法能否用于一般级数的敛散性判别

可以使用比较判别法和定义证其他的判别法所规定的条件都是正项级数也有特例:对级数取绝对值这样就变成了正项级数所有的方法都能用只要绝对值收敛那么他就是绝对收敛级数自然也就收敛了

判别级数∑(n=1,∝) 2^n sin(π/3^n) 的敛散性

∑(n=1,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=1,∝)2^nsin(π/3^n)与∑(n=1,∝)2^n(π/3^n)=∑(n=1,∝)π(2/

利用比值判别法判别级数∑1*3*5*...*(2n-1)/(3^n)*n!的敛散性

再答:如果满意,请点右上角“采纳答案”

求助一道级数题,(1/2)的根号n次方的敛散性,用比较判别法做

看不到你发的图片,再问:题目是1/(2^√n)的敛散性答案写2的根号n次方>n^2,再根据两者极限之比求得答案。请问这个n^2是如何找出来的?完全没有思绪,再答:因为Σ1/n^2是收敛的,只要能证明1

判别级数∑(-1)^n*(lnn)^2/n的敛散性

/>lim(n->∞)(lnn)^2/n=0f(x)=(lnx)²/xf'(x)=[2lnx-(lnx)²]/x²=lnx(2-lnx)/x²当x

用比较判别法的极限形式判别∑(n+1)/(n^2+n+1)的敛散性

lim(n->∞)【(n+1)/(n^2+n+1)】/(1/n)=lim(n->∞)n(n+1)/(n^2+n+1)=1∑(n+1)/(n^2+n+1)和∑1/n一样发散

用比较判别法判别Σ(n=2→∞)1/lnn的敛散性

当n>2时显然有lnn<n(可求导证明),则1/lnn>1/n,而Σ(n=2→∞)1/n发散,所以由比较判别法知Σ(n=2→∞)1/lnn发散.

判别根号2+根号3/2+……+根号((n+1)/n)的收敛性

(n+1)/n总是大于1那么你可以想像下它的图像应该在y=x的上方那么必然不可能收敛啊只要对于每一项都是正数的多项式在n到正无穷的时候那一项的极限不是0那么肯定不可能收敛