初等矩阵的逆矩阵等于自身作业帮
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:59:25
1.(A,E)=5311001-3-2010-521001r1-r3,r2+2r3101010-1-910012-521001r2-r1,r3-2r1101010-1-1900-113-1501-20
Eij(k)逆=Eij(-k)意思是单位矩阵的第i行乘以k加到第j行上这样的矩阵,他的逆矩阵就是第i行的-k倍加到第j行.Eij逆=Eij单位矩阵第ij两行互换,它的逆矩阵就是它本身Ei(k)逆=Ei
用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1-32100-30101011-1001第2行加上第3行×3,第3行减去第1行1
行变换就是左乘,列变换是右乘.
答案一定唯一.
(A,E)=12210021-20102-21001r2-2r1,r3-2r11221000-3-6-2100-6-3-201r3-r21221000-3-6-2100092-21r2*(-1/3),
注意方法,从左到右逐列处理(A,E)=3-20-11000022101001-2-3-2001001210001r1-3r3049510-30022101001-2-3-2001001210001r1
不一定,所谓的初等矩阵是指由单位矩阵E经过一次初等变换得到的矩阵,共有三种类型:(1)P(i,j),表示单位矩阵E交换i行和j行的元素或者交换i行和j行的元素,它的逆矩阵是它本身,即P(i,j);(2
用的图片,应该能看清吧.
用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1000100001000100-10100010030-60001第3行加上第1
Eij(k)一般是指第j行乘以k加到第i行这个记法并不统一,你只需按你所用教材中的定义方法掌握就行考研时并不用这些记法,会直接给出初等矩阵
用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=10001000120001002130001012140001第4行减去第2行,
因为|A|0∴A可逆∴AX=A+2XAX-2X=A(A-2E)X=A∵A-2E=301200110-020014002=1011-10012同样|A-2E|0∴A-2E也是可逆的∴X=A(A-2E)^
11-20701-1030001-30001-3
这个问题其实很简单:{AE}={EA逆}{011100}~{-1001-10}~{-1001-10}~11101011101011101011000111000100-10-11{-1001-10}~
3-20-11000022101001-2-3-2001001210001r1-3r3049510-30022101001-2-3-2001001210001r1-2r2,r3+r2,r2-2r400
就是m*m单位矩阵将1,3两列交换得到的矩阵再问:考题的填空题让填一个表达式!再答:那就是R再问:为什么再答:其实行初等变换矩阵尤其变换意义的,列变换矩阵也一样,我们已经知道了R矩阵是单位矩阵交换1,