初等变换法判断矩阵可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:49:30
这要看题目让干什么求矩阵的秩,可以列变换
一般来说,将一个矩阵化为标准阵遵循下面方法:先用第一行消掉下面所有行的第一项,即用a11将a21,a31,……an1消为0再用第二行将下面所有行的第二项消为0再用第三行将下面所有行的第三项消为0依次做
矩阵的初等变换有三类:1、用一个非零的数乘以矩阵的行(列)2、有一个数乘以某一行(列)加到其他的行(列),这里的数为任意的数,可以为零3、行(列)互换位置
左乘相当于行变换,右乘相当于列变换,这个没错但是你得讲清楚什么叫“对应的”初等列变换,我估计你在这里的理解会有问题
假设原方程为PAQ=B则A=P^(-1)BQ^(-1)P,Q为初等矩阵P^(-1)=PQ^(-1)=(1,0,-1|0,1,0|0,0,1)【按照行分割】B左乘P^(-1)相当于B初等行变换,一二行交
只要判断其是否是可逆矩阵就可以了,初等矩阵都是可逆矩阵,其逆矩阵仍是同一种初等矩阵.
如果只是判断可逆的话,其实就是判断行列式是否为零.因此,行变换和列变换都可以用.一般都是化成阶梯形
321315323r2-r1,r3-r13210-14002行列式=-6不等于0,(或者说非零行数=3,或者说矩阵的秩=3)故矩阵可逆.
此题考查初等变换与初等矩阵初等矩阵是经单位矩阵经一次初等变换得到的,用此初等矩阵左(右)乘A相当于对A实施一次相应的初等行(列)变换P1是由单位矩阵的第2列加到第1列得到的初等矩阵根据题意有AP1=B
10201/301001/300010再问:具体步骤有吗?
初等变换保持矩阵的秩,只需用初等变换把矩阵变成一个满秩矩阵﹙例如对角元全部不是零的对角阵﹚即可.
因为|A|0∴A可逆∴AX=A+2XAX-2X=A(A-2E)X=A∵A-2E=301200110-020014002=1011-10012同样|A-2E|0∴A-2E也是可逆的∴X=A(A-2E)^
如果你求出A的逆矩阵是B,只要验证A与B的乘积是不是等于单位阵即可
首先:“我先求A的逆,然后再X=A的逆B不是一样能求出来吗?只不过多算一点罢了”第一,不是麻烦一点,你自己试验一个题目就知道了.第二,如果A不可逆,该方法就不行,(A,B)的方法改进的话可以解,但考研
不矛盾.可逆矩阵的秩为n,单位矩阵的秩也是n
A与B等价则存在可逆矩阵P,Q满足PAQ=B所以|P||A||Q|=|B|所以|A|与|B|差一个非零的倍数!
11-20701-1030001-30001-3
AP,A右乘初等矩阵P,相当于对A实施一次相应的初等列变换:第1列的3倍加到第2列AP=3-22-100048再问:然后呢,再问:目的是不是把它变成有单位矩阵的那种再问:我知道了再答:OK
不妨一试:将XA=B两边转置后再做初等行变换.(个人思路)
第3行减去第一行为000,因此不可逆再问:不对啊?答案不是不可逆再问:不对啊?答案不是不可逆