.设X服从自由度为n的x²-分布,则其数学期望和方差分别是 .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:19:29
X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所以平方后,分子是
3X/2Y=(X/2)/(Y/3),所以服从自由度(2,3)的F分布.
你先求出那个啥f(x、y)等于多少,然后再E(U(x、y))=∫U(x、y)f(x、y)dxdy就可以了再问:。。。你这个方法复杂了,我已经做出来了
稍等,答案奉上还在吗?再问:在的。再答:额,马上给你答案满意请采纳,不懂再追问,谢谢
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
中括号后应该有个平方吧?k=1/4,n=1.中括号里是正态分布N(0,4),所以如果表达式是卡方分布的话,那自由度必然为1,而且修正系数k必为1/4再问:答案是对的,不过那个题中的确没有平方,可能是盗
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
楼上真是扯淡啊.明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所
你觉得可能吗……相当于卡方中每个正态分布乘以了根号2倍,就不是标准正态分布了应该说是(2z)/2服从卡方
因为X~t(k),由定义可令X=A/根号下B/k,其中A~N(0,1),X^2(k)分布Y=X^2=A^2/(B/k),因为A~N(0,1),所以A^2~X^2(k)Y=(A^2/1)/(B/K),则
用SPSS计算得P=0.13.
依题意,X1、X2均服从标准正态分布(X1+X2)/√2服从N(0,1)相当于只有1个标准正态分布的平方,所以自由度为1的卡方分布
是这样子的,X服从于自由度为3的卡方分布,则有X=x1^2+x2^2+x3^2从X里抽出三个样本,则X1,X2,X3都有上面X=·····的表达式.根据卡分分布的可加性,3*3=9.则有,X1+X2+
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
t分布是学生是分布,若X服从正态分布N(0,1),Y服从卡方分布χ^2(n),则X/(Y/n)^0.5服从t(n)分布.n-1是自由度,t取值大小只与自由度有关.
1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&