.求由方程ez-xyz=0所确定的函数z,求x和y的一阶偏导.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:36:14
.求由方程ez-xyz=0所确定的函数z,求x和y的一阶偏导.
高数求偏导:设z=z(x,y)是由方程(e^x)-xyz=0

将z对x的偏导记为dz/dx,(不规范,请勿参照)(e^x)-xyz=0两边对x求导数(e^x)'-(xyz)'=0e^x-x'yz-xy(dz/dx)=0e^x-yz-xy(dz/dx)=0xy(d

高等数学求偏导数设z=z(x,y)由方程lnx+xyz+lnz=0确定,求偏z/偏y.

lnx+xyz+lnz=0等号两边对y求偏导数等号左边共三项对y求导数(把x当作常数)第一项:0第二项:x(z+y*偏z/偏y)第三项:1/z*偏z/偏y三项相加等于0解出偏z/偏y=-xz^2/(1

设函数z=z(x,y)由方程x^2+y^3-xyz^1=0确定,求z/x,z/y

x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y

关于隐函数求偏导设z=z(x,y)是由方程e^z-xyz=0确定的隐函数,求对x的偏导.

令F=e^z-xyzF对x的偏导数为Fx=-yzF对z的偏导数为Fz=e^z-xy由偏导公式z对x的偏导=-Fx/Fz=yz/(e^z-xy)

设z=f(x,y) 由方程sin z-xyz=0 所确定的具有连续偏导数的函数 ,求dz

设F(x,y,z)=sinz-xyz则F′(X)=-yzF′(y)=-xzF′(z)=cosz-xyz对x的谝导数等于-yz/(cosz-xy)z对y的谝导数等于-xz/(cosz-xy)dz=[-y

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy.

对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy

两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)

设函数z=z(x,y)由方程2xz+ln(xyz)=0确定,求dz/dx(详细步骤)

z=z(x,y)(1)2xz+ln(xyz)=0(2)e^z-xyz=a^3求:∂z/∂x=?记:z'=∂z/∂x1)2z+2x(∂z/&#

已知函数z=f(x,y)由方程xyz=e^xz所确定,试求z=(x,y)的全微分dz.

方程两边对x求偏导:yz+xyəz/əx=(z+xəz/əx)e^xz得:əz/əx=(ze^xz-yz)/(xy-xe^xz)方程两边对y

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

.设z=z(x,y)由方程sin z=xyz所确定的隐函数,求dz.

先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-

设z=z(x,y)是由方程sinz=xyz所确定的隐函数,求 (下面的e是倒写的,打不出来)(ez/ex)(ez/ey)

已知z=z(x,y)是由方程sinz=xyz所确定的隐函数.对sinz=xyz方程两边同对x求偏导,于是有cosz*(əz/əx)=yz+xy*(əz/əx).

设函数z=f(x,y)由方程y^3z^2-x^2+xyz-5=0所确定,求∂z/∂x和ͦ

y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y&#

隐函数ez-xyz=0的导数dy/dx

e^z-xyz=0,求dy/dx.3个元素,1个方程.说明有2个自由变量,1个因变量.因要求dy/dx,所以,y是因变量,z和x是变量.e^z-xyz=0的方程两边同时对x求偏导.[注意,dz/dx=

由方程e^z-xyz=0所确定的二元方程Z=f(x,y)全微分dz

我帮你做一步下面的你应该就会了,

设函数z=z(x,y)是由方程z+ez=xy所确定的隐函数,求全微分dz.

对左右两边求导:(1+ez)dz=ydx+xdy.dz=1/(1+ez).(ydx+xdy).

由方程xyz+(x^2+y^2+z^2)^1/2 所确定的函数z=z(x,y)在点(1,0,-1

记p=√(x^2+y^2+z^2),则xyz+p=√2,p=√2-xyz两边对x求偏导得:yz+xyz'(x)+[x+zz'(x)]/p=0得:z'(x)=(-yz-x/p)/(xy+z/p)=-(p