函数项级数fn x的n-1次方除以(1 x的2n次方) 一致收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:33:34
symsnx;symsum((-1)^n*sin(pi/2^n*x^n),n,1,inf)结果:ans=sum((-1)^n*sin(pi/(2^n)*x^n),n=1..Inf)
用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛
找收敛域,让后除以前一项,看看就可以
就是公比为x^2的等比数列的求和因此和函数=1/(1-x^2),收敛区间为(-1,1)
∑[(-1)^(n-1)](x^n/n)求导得:∑[(-1)^(n-1)]x^(n-1)=∑(-x)^(n-1)(n从1起)=1/(1+x)积分得:∑[(-1)^(n-1)](x^n/n)=ln(1+
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
e^x=∑x^n/n!∑[(x-1)^2n]/(n!*2^n)=∑[((x-1)^2/2)^n]/(n!)=e^[(x-1)^2/2]
发散啊,不满足级数收敛的必要条件.
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛
因为lim(n->∞)[1/(2^n+n)]/(1/2^n)=1而Σ1/2^n收敛所以原级数收敛.
是Σ(x/(1+n^2x^2)一致收敛,还是fn(x)=x/(1+n^2x^2)一致收敛?如果是后者,|fn|<1/n,对x∈R成立.再答:继续一下,对于前者f(x)=Σ(x/(1+n^2x^2))在
由stirling公式n!根号(2πn)*n^n*e^(-n){[(2的n^2)/(n!)]}^(1/n)=(2^n*e)/[n*(2πn)^(1/(2n))]→无穷(当n→无穷)所以由cauchy判
通项极限非零,因此发散
这就用等比数列求和公式啊Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)(q≠1)当然这里的n不是你那个N公式里的n是说多少项你从0到N就有N+1项代进去可以得到:4的(N+1)次
注意区分这几种不同的一致收敛性:①在[-1,1]一致收敛;②在(-1,1)一致收敛;③在(-1,1)内闭一致收敛.显然①推出②推出③,但是反过来一般是不成立的.只有②的话级数各项在x=1处甚至未必有定
没看懂…x/1~再问:证明一致收敛再答:x/1是什么意思??x除1?再问:x/(1+n2x2)再答:n²x2吗?再问:都是平方再问:发错了再答:???再问:这题目太难了
比值判别法,后项与前项的比值=e/(1+1/n)^n>1,因此发散.再问:比值等于1啊再答:是比值,不是极限。对任意正整数n,(1+1/n)^n
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/