函数的左导数和右导数存在且相等能不能推出函数可导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:03:06
某函数的导函数在一点的极限存在,不能说明导函数在此点有定义,所以导数可能不存在.,不过这个点的确是连续的.因为该点附近的点可导再问:答案是不连续再答:。。。。我看看再答:答案怎么解释再问:我给你看原题
不正确.例如函数:当x≤0时,y=x;当x>0时,y=1.在x=0处左导数=1;右导数=0,但是在x=0处该函数是间断的.
如果包括端点,端点只需右导数和左导数存在,不然就没有意义了!
因为函数在连接点是不光滑的,即从左面趋近于连接点和从右面趋近于连接点走势是不同的.简单点给你举个例:f(x)=|x|,左导数为-1,右导数为1.而f(0)就是一个连接点.再问:如何证明在这种情况下它一
是,可导的意思就是:左导数等于右导数.
左右分段的函数在分段点处的可导性一般是通过判断左右导数是否相等来实现.如x<0时,f(x)=x+1,x≥0时,f(x)=x-1.对于本题来说,函数在x=0处的分段是x=0和x≠0,对于此类函数,没有讨
临界点导数用定义求.f(x)'=limx趋于0[x/1+e^1/x-f(0)]/(x-0)=lim1/(1+e^1/x),右导数,x趋于0+,分母趋于无穷大,整个趋于0;左导数,x趋于0-,分母趋于1
导数是描述函数在某点的变化率的,而极限描述的是函数在某点(或趋于这点)的函数值,关注导数和极限的相等关系是没有意义的.如果你非要问什么情况下函数极限等于其导数,那么要求函数首先要连续可导,并且导函数跟
哪里有问题呢?a点的右导数存在,b点的左导数存在的情况下,就把断电也包括在可导里面.这个就是个定义.不必过分的追究原因
函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等对.就是你所说的左导数等于右导数
“书上说函数在一点处可导的充分必要条件是左右极限都存在而且相等,可是后面又说是左导数和右导数存在且相等”.本质是一样的.你看解答就知道了,求导的本质就是求极限.x=1的有极限就是从1的右边(大于1的数
不是有些函数有左导数没有右导数再问:那样也可导?再答:可导再问:那那函数的连续呢?多元函数在某点连续是不是就不用左极限=右极限了?再答:对连续可导可导不一定连续再问:多元函数连续是不是也得证明左极限等
需要注意的是f(x)在x=1处不连续,f(1)=2/3左导数=2很容易右导数是(x^2-2/3)/(x-1),x趋于1,这个极限不存在
函数的导函数未必连续与函数左右导数存在且相等的条件不矛盾的.函数的左右导数存在且相等是一个极限过程,和该点的导数值并无直接联系,意思就是说对于导函数f‘(x),他在x0点比如说间断,但是其左右极限均存
是啊,就是啊左边导数等于右边导数这是判断函数在某一点可导的充分必要条件啊
如果函数在某一点处可导,则不一定存在该点的某个邻域,使得函数在该邻域内可导.比如函f(x)=x²D(x)(其中D(x)为狄利克雷函数)在点x=0处可导,但在其它任意一点处均不可导.
f(x)是个偶函数,显然左右导数是相反数,都是不存在的.
x-〉x0-时的函数的导数和导数在x0-的极限在概念上是不同的.x-〉x0-时的函数的导数,就是函数在x0这一点处的左导数.讨论导数在x0-的极限,首先要求函数在x0的某临域内都可导.这要求比函数在x
f(0+△x)-f(0)=2△x+1-5=2△x-4.当△x→0时,(f(0+△x)-f(0))/△x=2-4/△x,其极限不存在.换句话说,f(x)在x=0处的右导数不存在.------------