函数y等于f(x)在x0处连续性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:03:43
可以这么由条件知f(x)在x0处可导.则f(x)在x0处必连续(可导必连续,连续不一定可导).设h(x)=f(x)g(x)现在先讨论h(x)在x0处的连续性:hxo+(x)=f(x0+)g(x0+);
f'(x)=f'(x0)+f''(x0)(x-x0)+f'''(x0)(x-x0)^2/2+o(x-x0)^2=f'(x0)+f'''(x0)(x-x0)^2/2+o(x-x0)^2取x→x0,则f'
这道题你看一下,左极限是否等于右极限左极限=3右极限=3假如这道题还有一个条件,就是f(0)=3,那么就一定连续了这道题中f(0)是没有定义的,所以f(0)是可去间断点,也就是说f(x)不连续函数在点
不等.你说的第一名种情况是极限.但是极限存在导数不一定存在!如一条曲线的斜率即为导数,在某一点的斜率可能不存在.再问:这是复习全书的原话。。。再答:啊?我自己打的。没买全书。再答:你看不懂么?再问:我
错误....比如y=0(x≠0)limx→0y=0但y在x=0不连续
告诉你个口诀:可导一定连续,连续一定可积,连续一定有界,可积一定有界,可积不一定连续,连续不一定可微,可微一定连续,偏导连续一定可微,偏导存在不一定连续,连续不一定偏导存在,可微不一定偏导连续,二阶混
首先若f(x)在某点连续,则易证|f(x)|也在那点连续而h(x)=(f(x)+g(x)+|f(x)-g(x)|)/2所以h(x)在x0处连续
证明f(x)在R上连续,即要证明对于任意x0,极限lim[f(x0+Δx)(Δx→0)存在且等于f(x0).因为f(x)在x=0处连续,所以limf(x)(x→0)=f(0)又因为f(x+y)=f(x
对F(x,y)中的x求偏导得f‘(x0)再对y求偏导得0要求F(x,y)连续利用可导必连续定理对其求x和y的偏导得F’(x0,y0)=f‘(x0)+0为常数所以连续
偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在再答:所以是既非充分又非必要条件再答:希望对你有帮助
必要条件,如果在(x0,y0)点连续,并且在这点的左导数等于右导数,这时在(x0,y0)这点才是可导的(也就是可微分),而如果是已知可微分的话,那必定能推导出连续.
lim[f(x0-x)-f(x0+x)]/x(x->x0)=-2lim[f(x0+x)-f(x0-x)]/[(x0+x)-(x0-x)](x->x0)=-2f'(x0)
在那里有解且在那里左右都趋向于那个解再问:那和“在X0附近有定义”的区别是什么再答:有定义就是有解可以不连续但是连续就会有定义
A骗到连续可以推出全微分存在但全微分只推得了偏导存在,不能推出偏导连续
可微必连续,连续不一定可微,接下来你自己选择啦~在一元函数中,可微和可导是一个概念,也就是互为充要条件,连续和导数的关系就是你问的问题,多元函数中,可微不一定可导,可导也不一定可微
偏导数存在且连续是函数连续的充分非必要条件偏导数存在是函数连续的非充分非必要条件
设f(x0,y0)=c>0∵函数f(x,y)在M0(x0,y0)处连续,对于c/2>0,存在一个δ>0.当(x,y)属于N(M0,δ)时,|f(x,y)-f(x0,y0)|<c/2.即-c/2<f(x
你所说的“一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续”可以简单的表述为“二元函数f(x,y)在(x0,y0)处分别按单变量连续”.如果f(x,y)在(x0,y0)点连续,则一定按单
函数在一点连续的定义就是:在该点极限存在且极限值等于函数值
不好说.如分段函数f(x)=1/x,x≠0;f(x)=0,x=0.则lim(x→∞)f(x)=f(0),但f(x)在x=0处不连续.再如:常数函数f(x)=1,也满足题目每件,它在任一点都是连续的.