函数y=xe-x,x∈[0,4]的最小值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:54:58
y'=e^x^2+2x^2e^x^2y''=2xe^x^2+4xe^x^2+4x^3e^x^2y'''=2e^x^2+4x^2e^x^2+4e^x^2+8x^2e^x^2+12x^2e^x^2+8x^
你这个直接求积分吧用分步积分即可y=∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C(c为常数)
y=e^x(xcosx)=e^x(xcosx)+(xcosx)'e^x=xe^xcosx+e^x*cosx-e^x*x*sinx.
根据n阶导数的莱布尼茨得f^n(x)=C(n,0)xe^x+C(n,1)e^xf^n(0)=n
再问:�ҵĴ
y'=x'*e^(-2x)+x[e^(-2x)]'=e^(-2x)+xe^(-2x)*(-2x)'=e^(-2x)-2xe^(-2x)=(1-2x)e^(-2x)
分步积分.先把e^-2x放进去.再问:可以写具体过程吗?再答:看我插入的图片。
y^3+xe^y=x^5同时对x求导3y^2*y'+e^y+xy'e^y=5x^4(3y^2+xe^y)y'=5x^4-e^yy'=(5x^4-e^y)/(3y^2+xe^y)代入(2,0)y'|(2
f(x)=xe^kxf'(x)=x'*e^kx+x*(e^kx)'=e^kx+kx*e^kx=(1+kx)e^kx
其实就是隐函数求导,方程两边同时对x求导,y看做中间变量y'e^x+ye^x-e^y-(xe^y)y'=0所以dy/dx=y'=(e^y-ye^x)/(e^x-xe^y)
两边对x求导,则2x-[e^y+x(e^y)y']=0整理得y'=(2x-e^y)/(xe^y)
ye^x*log(ye)
解y=xe^xy'=(x)'e^x+x(e^x)'=e^x+xe^x
y'=e^(2x)+2xe^(2x)=(1+2x)e^(2x)=0,得极值点x=-1/2当x>-1/2时,单调增
y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得
那个点是matlab中的点乘,代表矩阵中相同位置的元素乘以元素,不是矩阵乘以矩阵
y-xe^y+x=0两边求导:y'-e^y-xe^y*y'+1=0【(xe^y)'=x'(e^y)+x*(e^y)'=e^y+xe^y*y'】(1-xe^y)y'=e^y-1y'=(e^y-1)/(1
y'=(xe^y)'=x'e^y+x(e^y)'=e^y+xe^yy'y‘=e^y/(1-e^y)∴dy/dx=e^y/(1-e^y)x=0好象没有一个确定的值
f'(x)=e^(-x)-xe^(-x)=(1-x)·e^(-x)令f'(x)=0解得x=1①当0≤x<1时,f'(x)>0,f(x)为增函数,此时最小值为f(0)=0②当1<x≤4时,f'(x)<0