函数y=tanwx(w>0)的图像的相邻两支截直线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:30:02
如图:AB=OC,则f(x)的周期为π/4,则w=4,f(π/4)=tan π =0
因为y=tanx在(π/2,π)单调递增所以kπ-π/2
T=π=2π/w-->w=2最高点的纵坐标为3/2-->A=3/2对称轴方程是x=π/6-->因为sin函数的对称轴在π/2+kπ,上,所以φ=-π/6+kπ+π/2--->φ=π/3y=1.5sin
函数y=tanwx在区间(-π/2,π/2)上为增函数,则函数的最小正周期大于等于π.即T=π/w>=π,w的取值范围是(0,1].
相邻两支相差一个周期所以T=π/4T=π/w=π/4w=4f(x)=tan4xf(π/2)=tan2π=0
A=3,半个周期=11*pi/12-5*pi/12=pi/2,所以w=2,代入M点坐标解出p=-pi/3
y=sinx在一个周期内有1个最小值3T/4+49T=13π/2w+49(2π/w)=1解得w=199π/2
偶函数则x=0是对称轴sin的对称轴是在函数取最值得地方所以sin(0*w+q)=sinq=1或-10
首先得T/2=2π-3π/4=5π/4所以:T=5π/2,即2π/w=5π/2,所以:w=4/5;所以:y=sin(4x/5+A),把点(3π/4,-1)代入,得:-1=sin(-3π/5+A)所以:
证明:函数f(x)的周期是w,则f(x+w)=f(x)对定义域内的任何x都成立设g(x)=f(ax)则g(x+w/a)=f[a(x+w/a)]=f(ax+w)=f(ax)=g(x)这说明了函数g(x)
依题意知tan(ωx)=tan[ω(x+π/4)]=π/3从而得(1+π²/9)×tan(ωπ/4)=0所以tan(ωπ/4)=0不妨令ωπ/4=π(或更准确地令其等于π+kπ,k∈Z)等ω
由条件可得函数f(x)周期为π/8.即π/w=π/8.所以w=8即f(x)=tan8x.所以f(π/8)=0
f(x)=tanwx(w>0)的图像的相邻两支截直线y=1,所得线段长为π/4,那么f(x)的周期T=π/w=π/4∴w=4f(x)=tan4xf(π/12)=tanπ/3=√3
由题意T=π/6=π/w所以w=6f(x)=tan6xf(π/6)=tanπ=0
所得线段长为6π.即周期T=6π故w=2π/T=1/3f(x)=tan(x/3)f(π)=tan(π/3)=根号3
图像的相邻的两支截直线y=(∏/4)所得线段长为∏/4说明图像周期为∏/4所以w=4所以y=tan4x希望给分哈.再问:你确定对吗?再答:恩,应该是的
要知道,正切函数图像是一支不断平移得到的.周期=π/w=6πw=1/6f(π/2)=tanπ/12=2-根3
正切函数图像是由无数条间断的曲线组成,每条可称为一个分支.各分支曲线均为沿x轴平移关系.相邻两支的平移单位为π/w设直线y=1与相邻两支曲线的交点横坐标为x1、x2,则m=|x2-x1|=π/w同理,
求函数函数y=Asin(wx+φ))(A≠0,w>0)的单调区间解析:∵函数y=Asin(wx+φ))(A≠0,w>0)单调增区间:2kπ-π/2
y=tanwx的最小正周期为T=π/|w|因为在(-π/2,π/2)内为减函数,则从其图像上首先可以确定w<0且,此时其周期T≥(π/2)-(-π/2)=π