函数y=sinxcosx 根号3倍cosx的平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:34:02
y=2√3sinxcosx+2cos²x=√3sin2x+cos2x+1=2(√3/2sin2x+1/2*cos2x)+1=2(sin2xcosπ/6+cos2xsinπ/6)+1=2sin
y=√3cos2x+sin2x=√[1²+(√3)²]sin(2x+z)=2sin(2x+z)其中tanz=√3/1=√3所以最大=2,最小=-2T=2π/2=π
函数y=sinxcosx+(√3)cos²x-(√3)/2的最小正周期y=(1/2)sin2x+(√3)(1+cos2x)/2-(√3)/2=(1/2)sin2x+(√3/2)cos2x=s
y=sinxcosx+根号3cos²x-根号3=1/2sin2x+√3/2(cos2x+1)-√3=1/2sin2x+√3/2cos2x-√3/2=sin(2x+π/3)-√3/2令2x+π
y=1/2sin2x+sqr(3)/2*(1+cox(2x))-sqr(3)=sin(2x+π/3)-sqr(3)/2对称中心横坐标可令sin(2x+π/3)=02x+π/3=kπx=kπ/2-π/6
sinxcosx=1/2sin2xcos²x=1/2(1+cos2x)所以原式=1/2sin2x+√3/2(1+cos2x)-√3/2=1/2sin2x+√3/2cos2x=sin(2x+6
y=1/2*cos²x+√3/2*sinxcosx+1=1/4*(cos2x-1)+√3/4*sin2x+1=1/2*(1/2*cos2x+√3/2*sin2x)+3/4=1/2*(sin3
y=1+√3/2sin2x+1/2+1/2cos2x=3/2+sin(2x+π/6)【注:π是派--】∴周期T=2π/2=π值域=[1/2,5/2]
y=√3cos²x+sinxcosx=(√3/2)[cos2x+1]+(1/2)sin2x=sin(2x+π/3)+√3/2所以值域为[-1+√3/2,1+√3/2]最小正周期为2π/2=π
y=1/2cos²x+√3/2sinxcosx+1=1/2(1/2+1/2cos2x+√3/2sin2x)+1=1/2(sin2xcosπ/6+cos2xsinπ/6)+1+1/4=1/2s
y=2cosxsin(x+π/3)-根号3*(sin^2)x+sinxcosx,后两项先提出一个sinx,然后括号内部分用叠加原理,得到y=2cosxsin(x+π/3)+2sinxcos(x+π/3
y=2根号3sinxcosx-2cos^2x+1=根号3sin2x-cos2x=2sin(2x-π/6)T=2π/2=π2x-π/6=2kπ+π/2当x=kπ+π/3时,函数的最大值=22x-π/6=
y=sinxcosx+√3cos²x-√3/2=1/2*(2sinxcosx)+√3/2(2cos²x-1)=1/2*sin2x+√3/2cos2x.正弦余弦的二倍角公式=sin(
y=sinxcosx+根号3cos^2x=(1/2)sin2x+根号3×(1+cos2x)/2=(1/2)sin2x+(根号3/2)cos2x+根号3/2=sin(2x+60°)+根号3/2当2x+6
y=sin²x+√3sinxcosx-1=[1-cos(2x)]/2+(√3/2)sin(2x)-1=(√3/2)sin(2x)-(1/2)cos(2x)-1/2=sin(2x-π/6)-1
由题知,已知函数y=cos²x+(√3)sinxcosx+1,x∈R,所以,化简y=cos²x+(√3)sinxcosx+1=(cos(2x)+1)/2+(√3/2)sin(2x)
函数y=√3cos^2x+sinxcosx=√3/2*(1+cos2x)+1/2*sin2x=√3/2+√3/2*cos2x+1/2*sin2x=√3/2+sin(2x+π/3)周期T=π最大值√3/
y=√3cos^2x-sinxcosx=√3/2*cos2x-1/2*sin2x+√3/2=cos(2x+30°)+√3/2最大值1+√3/2