函数y=3^x 1-2,x属于[-2,0]的值域是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:40:05
画图观察一下很容易就解出来了:因为y=f(x)是偶函数,所以f(-x2)=f(x2)因为x1大于0,x2小于0且|x1|小于|x2|,所以x2
(1)∵函数y=x1+x=1-1x+1,∴函数的值域为(-∞,1)∪(1,+∞);(2)原式可化为:2yx2-4yx+3y-5=0,∴△=16y2-8y(3y-5)≥0,∴y(y-5)≤0,∴0≤y≤
证明:令x2=0,则原等式化为:f(x1+0)+f(x1-0)=2f(x1)*f(0)f(x1)+f(x1)=2f(x1)*f(0)2f(x1)=2f(x1)*f(0)可得f(0)=1.令x1=0,则
令g(x)=x2ln(1+x1−x),x∈[-12,12],则g(-x)=x2ln(1−x1+x)=-g(x),即g(x)为奇函数,∴g(x)max+g(x)min=0,∵3+x2ln(1+x1−x)
(f(x1)+f(x2))/2=(lgx1+lgx2)/2=log(x1*x2)^0.5f[(x1+x2)/2]=lg((x1+x2)/2)=lg(x1+x2)-lg2x1>0x2>0x1+x2>=2
是不是"当x取x1,x2时,函数值相等,则x取x1+x2时,函数值为多少?"当X取X1,X2时,Y值相等,说明对称轴是x=(x1+x2)/2.那么当x取x1+x2时,x1+x2关于对称轴的对称点是0所
由y=3-x1+2x(x≥0),得x=3-y2y+1≥0.∴-12<y≤3.答案:(-12,3]
x^2+2mx+2m+3=0x1+x2=-2mx1x2=2m+3x1²+x2²=(x1+x2)²-2x1x2=4m²-2(2m+3)=4m²-4m-6
当X1
f(0)=[f(0)]^3f(1)=[f(1)]^3f(-1)=[f(-1)]^3x=x^3,x=0,1,-1故:f(0)+f(1)+f(-1)=0+1-1=0
Sin(2x+派/6)=3/5,2x+派/6=2Kπ+37°或2Kπ+143°,所以x1=Kπ+3点5°或Kπ+56点5°(其中派/6=30°,一般情况下两直角边为3和4的直角三角形,其两锐角约为37
这个题考查导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想,化归思想,抽象概括能力和分析解决问题的能力,第一问中,对f(x)求导,讨论f‘(x)的正负以及对应f(x)的单调性,得出函
因为sin最值是-1和1所以f(x1)
证明:f'(x)=(1-x)e^(-x),当f'(x)=0时,有x=1.当x>1时,f'(x)<0;当x<1时,f'(x)>0.所以,在x=1时f(x)取得极大值和最大值.又当x趋近于+∞时,f(x)
好;对于任意x1属于(0,2),f(x)在(0,2)上的所有值都可找到(至少一个)x2属于[1,2],使得f(x)>=g(x2)所以只要在[1,2]上找到最小的g(x)就可以了;即g(x)在[1,2]
令t=1+x1−x>0,求得-1<x<1,故函数的定义域为(-1,1),y=lnt,故本题即求函数t在定义域内的增区间.由于t=-x+1x−1=-x−1+2x−1=-1-2x−1 在区间(-
函数f(x)对任何x属于R恒有f(x1*x2)=f(x1)+f(x2),已知f(8)=3,则f(√2)=?因为函数f(x)对任何x属于R恒有f(x1*x2)=f(x1)+f(x2)所以f(x)=log
f(x1)-f(x2)=(1/3)[(x1-x2)(x1^2+x1·x2+x2^2)]-(a^2)(x1-x2)=(1/3)(x1-x2)(x1^2+x1·x2+x2^2-3a^2)|f(x1)-f(
f[(x1+x2)/2]=2^[(x1+x2)/2][f(x1)+f(x2)]/2=(2^x1+2^x2)/2由基本不等式(2^x1+2^x2)/2≧√[(2^x1)(2^x2)]=2^[(x1+x2
由于f(x)=xe^(-x),x∈R所以x=f(x)/(e^x)由题意,可以设f(x1)=f(x2)=K所以:x1=f(x1)/(e^x1)=K/(e^x1)同理:x2=K/(e^x2)考虑到x1与x