函数y=-1 2x² bln(x 2)在

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:03:46
函数y=-1 2x² bln(x 2)在
已知二次函数y=x2-x+m.

(1)二次函数y=x2-x+m=(x-12)2-14+m∵a>0,∴抛物线开口向上,对称轴为x=12,顶点坐标为(12,-14+m).(2)由已知,即-14+m>0,解得m>14,(3)∵二次函数y=

函数y=(x2-x)/(x2-x+1)的值域

去分母得:x^2(y-1)+x(1-y)+y=0y=1时,上式无解y=1时,为二次式,须有delta>=0即(1-y)^2-4y(y-1)>=0(y-1)(3y+1)再问:x^2(y-1)+x(1-y

二次函数y=-2x2+x-12

∵二次函数y=-2x2+x-12中,a=-2<0,∴有最大值.当x=-b2a=-1−4=14时,y最大值=4ac−b24a=4−1−8=-38,∵b2-4ac=1-4=-3<0,∴它的图象与x轴没有交

已知二次函数y=x2-6x+8

(1)把x=0代入y=x2-6x+8得y=8,所以抛物线与y轴的交点坐标为(0,8),把y=0代入y=x2-6x+8得x2-6x+8=0,解得x1=2,x2=4,所以抛物线与x轴的交点坐标为(2,0)

二次函数y=x2-6x+10,当1

y=x2-6x+10=(x-3)²+1即抛物线y=x2-6x+10顶点(3,1)在1再问:y为什么最小值不是2?再答:因为顶点是(3,1),1<3<4在取值范围内,且为抛物线最低点,当然在顶

设函数f(x)=x2+bln(x+1),

(1)由x+1>0得x>-1∴f(x)的定义域为(-1,+∞),对x∈(-1,+∞),都有f(x)≥f(1),∴f(1)是函数f(x)的最小值,故有f′(1)=0,f/(x)=2x+bx+1,∴2+b

函数y=根号下x2+3x-4加根号下-x2+4x+12的定义域是

根号下的数必须都大于等于0所以x²+3x-4≥0且-x²+4x+12≥0所以(x-1)(x+4)≥0且(x+2)(x-6)≤0所以x≤-4或x≥1且-2≤x≤6综上:1≤x≤6

函数y=x2-3x/x+1求导

1、y=(x²-3x)/(x+1)那么y'=[(x²-3x)'*(x+1)-(x²-3x)*(x+1)']/(x+1)²显然(x²-3x)'=2x-3

设函数f(x)=x2+bln(x+1)(1) 当b=-4时,求函数f(x)的极值; (2) 当b>1/2时,求函数f(x

(1)把b=-4代入求导,令导数=0,可以解得x=1(注意定义域),再代回f(x)求极值(2)单调递增,将b看作常数进行求导,f(x)的导函数=2[(x+1)+k/(x+1)-1](其中k=b/2>1

设函数f(x)=x^2+bln(x+1),b不为0

解(1):先求函数f(x)=x2+bln(x+1)的定义域,由x+1>0得x>-1,即x∈(-1,+∞)又f'(x)=2x+b/(x+1)=(2x2+2x+b)/(x+1)=[(x+1/2)2+b-1

函数y=4x2+1x

解析:y′=8x-1x2=8x3−1x2,令y′>0,解得x>12,则函数的单调递增区间为(12,+∞).故答案:(12,+∞).

函数y=x2-1/x2+1的值域(x2为x的平方)

还是按照你的记法:x2为x的平方,y=(x2-1)/(x2+1)两边同乘以x2+1得:y(x2+1)=x2-1去括号y*x2+y=x2-1移项y*x2-x2+y+1=0(y-1)x2+y+1=0x为实

已知二次函数y=12x2-3x+1

(1)∵y=12x2-3x+1=12(x2-6x)+1=12(x-3)2-72,∴把它的图象向右平移1个单位,向下平移3个单位得到的函数的解析式为:y=12(x-3-1)2-72-3,即y=12(x-

求函数y=x/x2+x+1的值域

用均值不等式,考虑X>0,X

设函数f(x)=x2+bln(x+1),其中b≠0.

(1)由题意知,f(x)的定义域为(-1,+∞),b=-12时,由f/(x)=2x−12x+1=2x2+2x−12x+1=0,得x=2(x=-3舍去),当x∈[1,2)时,f′(x)<0,当x∈(2,

求函数y=x-1/x2-x的定义域

∵y=1/(x²-x)∴x²-x≠0x(x-1)≠0∴x≠0或x≠1∴定义域为:(负无穷,0)∪(0,1)∪(1,正无穷)