函数w=1 z把下列z平面上的曲线映射成w平面上怎样的曲线?x=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:47:08
△=(-2)^2-4X5=-16,z=1+2i或z=1-2i.z在第一象限,z=1+2iz-i=1+i共轭复数1-i,故w=(1+4i-4)+1-i=-2+3i1.|w|=√(2^2+3^2)=√13
复变函数f(z)=u(x,y)+iv(x,y)连续的充要条件是两个二元实函数u(x,y),v(x,y)都连续,本题中f(z)=x-iy,这里u(x,y)=x,v(x,y)=-y在xoy平面上处处连续,
设:z=x+yi、w=a+bi,则:|w|=1,得:a²+b²=1----------------------------(1)又:3w的共轭复数=z+i,则:3(a-bi)=(x
|z+1-2i|=|z-(-1+2i)|=3就是说点Z到(-1,2)的距离为3即Z轨迹为以(-1,2)为圆心半径为3的圆设Z=(x1,y1)W=(x2,y2)可以求得Z轨迹方程根据w=4*z-i+1分
条件不够啊,仅对z=2i来说,满足条件的w可以取除了2i以外所有的复数,所以如果说轨迹,只能是整个平面啦.轨迹不能是曲线啊!是不是丢掉什么条件了?
[(x+1)^2+y^2]^0.5=2*[(x-1)^2+y^2]^0.5(x+1)^2+y^2=4*[(x-1)^2+y^2]3y^2+(3x-1)(x-3)=03y^2+3(x-(5/3))^2=
设z=cosθ+isinθ,则w=1/(1+cosθ+isinθ)^2=1/{2cos(θ/2)[cos(θ/2)+isin(θ/2)]}^2=1/{4[cos(θ/2)]^2*(cosθ+isinθ
可以设z=x+iy,且满足条件(x^2+y^2)^1/2=2;设w=u+iv,将z带入w(z)的方程中,反解出z(w)的方程(u(x)和v(y))带入条件应该可以吧~木有试过,仅是一种思路······
设Z=x+y*i,代入|z-i|=|z-1|,|x+(y-1)i|=|(x-1)+y*i|,两边平方,得x^2+(y-1)^2=(x-1)^2+y^2,解得,y=x.即Z的实部与虚部相等.∴Z(x,y
B={w|w=5+2根号2-2i}
二四象限角分线,原点变为无穷远点
设z=a(cosθ+isinθ),则w=acosθ=x+yi,x,y∈R,∴x=acosθ,y=0,∴所求轨迹是x轴上的线段:y=0(-a
映成下半平面只要将图中“事实上,……“这句话中”实轴变为实轴是同向的“改成是反向的,即知应有ad-bc<0
由于两个复数差的绝对值表示两个复数在复平面内对应点之间的距离,故关于复数z的方程|z-3|=1在复平面上表示的图形是以(3,0)为圆心,以1为半径的圆,故选B.
设z=a+bi,由已知得a^2+b^2=4,w=(1+z)/z=(1+a+bi)/(a+bi)=(a^2+b^2+a)/(a^2+b^2)-bi/(a^2+b^2),所以x=(4+a)/4,y=-b/
△f=1/(z+h)-1/z=-h/[z(z+h)]f'(z)=lim(h->0)△f/h=lim(h->0)-h/[z(z+h)]/h=-lim(h->0)1/[z(z+h)]=-1/z×z=-1/
1/z=1/(1-(1-z))=1+(1-z)+(1-z)^2+.f(z)=1/3*(1+(1-z)+(1-z)^2+.)+2
奇点为0,0为四级极点,留数为Res[f(z),0]=1/6,不要要是你题目表达的意思为f(x)=z/(z^4-1)的话,结果就不一样了哦!这样的话奇点分别为1,-1,i,-i.她们的留数分别为Res
设z=x+yi丨z+1丨=√[(x+1)^2+y^2]丨z+i丨=√[x^2+(y+1)^2]丨z+1丨²-丨z+i丨²=x^2+2x+1+y^2-x^2-y^2-2y-1=12x
在复数域z平面上的表示z=x+i*y.映射成w平面上,w=1/z=(x-i*y)/(x^2+y^2).z平面上x=1曲线(y为任意实数)-->w平面上为(1-i*y)/(1^2+y^2)=(1-i*y