函数u=u(x,y)和v=v(x,y)由方程组
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:01:53
显然不独立.如果不知道U,那么V的分布就是V自身的分布,可以取值任何数.而如果知道了U,那么V在已知U的条件下的条件分布就不是V自身的分布了,因为取值不能超过U.
估计你问的是复合函数的求导:Y=U(V)得到y'=u'v'
cov(U,V)=cov(x+y,x-y)=cov(x,x)-cov(x,y)+cov(y,x)-cov(y,y)变量X和Y相互独立-->cov(x,y)=cov(y,x)=0量X和Y相互同分布-->
偏z/偏x=(偏z/偏f)*f'x=偏z/偏f*1=偏z/偏f;偏z/偏u=(偏z/偏f)*(偏f/偏u)+偏g/偏u+偏h/偏u.
此题应将x与y看做变量,求du/dx时,应将y看做常数;求du/dy时,将x看做常数.对这两个等式两边求关于x的偏导数,则1+2u×du/dx+2v×dv/dx=0;2x+du/dx+2v×dv/dx
∵cov(U,V)=E(U-EU)(V-EV)=E(X-Y-E(X-Y))E(X+Y-E(X+Y))=E(X-EX-Y+EY)E(X-EX+Y-EY)=E(X-EX)2-E(Y-EY)2=DX-DY由
这实际上是隐函数组求偏导数的问题,具体过程见图片.
Pxy是相关系数?应该是等于零
怎么是u-v啊?觉得应该是实部虚部是两个式子吧验证两者满足二维拉普拉斯方程后用柯西黎曼方程,然后求积分吧u-v的话我也看不懂…
v'y=2x,因此u'x=v'y=2x,积分得u=x^2+g(y),又由于u'y=-v'x,所以g'(y)=-2y,g(y)=-y^2+c,故u=x^2-y^2+c,f(z)=x^2-y^2+c+2i
首先你要知道对数函数有个公式alnb=ln(b^a)这是对数中的一个运算公式而e^lna=a所以e^(vlnu)=e^[ln(u^v)]=u^v
x、y自变量,将式子对x偏导u²+v²-x²-y=0,对x求导2uu'+2vv'-2x=0uu'+vv'-x=0(1)-u+v-xy+1=0-u'+v'-y=0(2)联立
symsuv;d=[-5:0.5:5];[uv]=meshgrid(d);x=u.*sin(v),y=u.*cos(v),z=u;surf(x,y,z)
(u+v)=f(u)f(v),此类函数一般为指数函数模型,y=a^x,g(uv)=g(u)+g(v),此类函数一般为对数函数模型,y=loga*x.由此解得f(x)=9^x,g(x)=log9*x.所
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
①偏z/偏x=偏z/偏u偏u/偏x+偏z/偏v偏v/偏x=(2uv-v^2)siny+(2uv-v^2)cosy=(2x^2sinycosy-x^2(cosy)^2)siny+(2x^2sinycos
y=u^v,则lny=lnu^v,lny=vlnu,求导有:y'/y=v'lnu+vu'/u,y'=y(v'lnu+vu'/u),其中,y=u^v,y'=dy/dx,v'=dv/dx,u'=du/dx
很早见过有人发过这题当时没学现在学了还没学清楚貌似是流行上的微积分的内容
密度函数法f(u,v)=f(x(u,v),y(u,v))|Jacob|f(x(u,v),y(u,v))就是把f(x,y)里面的x,y代替成u,v按这个例子,就是解出x=(u+v)/2,y=(u-v)/