函数fx=(ax^2 x)e^x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:19:43
第一种情况是 在-5左边或者正好在-5上,不知道怎搞的拍出来就没有了.高考顺利~再问:thankyou,,你是刚刚做的么!?。。。thank再答:我大一,刚刚看到好熟悉,就做了一下~再问:t
(1)当x∈[-e,0)时,-x∈(0,e],f(x)=-f(-x)=-a(-x)-ln(-x)=ax-ln(-x)(2)当x∈[-e,0)时,f(x)=ax-ln(-x),f'(x)=a-1/x当a
分段讨论当x>=2时,f(x)=(2+a)x-4;当x0,a-2
你可以给潇打电话~她会做
∵e^x>0,f(x)>0∴ax^2+x>0∴ax(x+1/a)>0解得x∈(0,-1/a)求导f'(x)=(ax^2+x)'(e^x)+(e^x)'(ax^2+x)=(2ax+1)(e^x)+(e^
解由函数fx=x^3-x^2+ax+b若函数fx在x=1处取得极值知f'(1)=0由f'(x)=3x^2-2x+a即f‘(1)=3-2+a=0解得a=-1即f(x)=x^3-x^2-x+b得f'(x)
解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,
1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a
因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得
再问:...好像不太对
再问:第一问为什么是之间,而不是正负无穷再答:我怎么觉得我写的是不是之间呀==
题目不对吧?对于非负x,当x足够大时,e^(-2x)趋于零,而x/(1+1)趋于常数1,可消去不等式右边的-1,2e^x趋于无穷大,由此有0大于无穷大?
首先把式子列出来:f(x)=x(e^x-1)-ax^2(应该是这个)然后考虑x=0时,f(x)=0,(那么就好办了,只需证明在x大于等于零的时候,f(x)单调递增就行了)接下来,求导f'(x)=(x+
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
fx=x(e^x-1)-1/2x^2f'(x)=e^x-1+x*e^x-x=(1+x)e^x-(1+x)=(x+1)(e^x-1)x+1是增函数e^x-1是增函数令(x+1)(e^x-1)>=0∴x=
{解析}首先我们记y1=ax^2+1,y2=(a^2-1)e^(ax)由于二次函数的单调性比较好确定所以我们先来探讨x≥0的情况{答}A.若a>0,f(x)为增函数,y2(0)≤y1(0)a^2≤2且
F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0
求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0
f'(x)=3x²+2ax+1≤0,x∈(-2/3,-1/3)2ax≤1-3x²2a≥1/x-3x因为g(x)=1/x-3x在(-2/3,-1/3)上单调递减,所以g(x)再问:f
f'(x)=2x+a>0x>-a/2-a/2=-2a=4