函数f(x)=x (x^2 a)的图像的最高点为P(m,n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:20:18
函数f(x)=x (x^2 a)的图像的最高点为P(m,n)
已知函数f(x)=-x^3+3x^2+9x+a (1)求f(x)的

原先是3楼,修改一个笔误:1〉f'(x)=-3x^2+6x+9=-3*(x^2-2x-3)=-3(x+1)(x-3)所以单调区间是:x>3或x

函数f(x)=ax^2+bx+c(a>0),f'(x)为f(x)的导函数,设A={x/f(x)

f(x)=ax^2+bx+c=a(x-x1)(x-x2),抛物线开口向上,导数为负数的点在对称轴左边.不妨设x1

已知函数f(x)=(x2+2x+a)/x

已知函数f(x)=(x2+2x+a)/x(1)若a=1/2,当x∈[1,+∞)时,求函数的最小值(2)当x∈[1,+∞)时,f(x)>0恒成立,求实数a的取值范围(3)当x∈[1,+∞)时,f(x)>

设f(x)=x/[a(x+2)],若关于x的方程f(x)=x有唯一解,则函数f(x)图象的渐近线是

f(x)=x有唯一解,即方程x/[a(x+2)]=x有唯一解观察方程知,x=0必定为其解,所以要使方程有唯一解,即使方程的解只为x=0,即方程所有解都为x=0(注意这句话).x≠0时,化简得1/[a(

设a为实数,函数f(x)=2x^2+(x-a)|x-a|求f(x)的最小值

f(x)为开口向上的抛物线,一般情况下最小值在对称轴x=a/3取得,但由于有定义域,此时就要考虑对称轴在定义域内还是不在,所以得到答案的分类,在定义域类则最小值在对称轴取得,不在最小值则在x=a取得.

设a为实数,函数f(x)=2x²+(x-a)|x-a|求f(x)的最小值

将f(x)写成分段形式:x≥a,f(x)=3x^2-2ax+a^2x<a,f(x)=x^2+2ax-a^2对a分类讨论,分别研究左右两段.若a≥0,右段抛物线可在x=a取到最小值(因为其对称轴在

已知函数f(x)=a的x次方 + [x+1分之x-2](a>1)

f(x)=a^x+(x-2)/(x+1)在(-1,正无穷)上取点(x1,0)(x2,0),且x1>x2则f(x1)-f(x2)=a^x1-a^x2+(x1-x2)/[(x1+1)(x2+1)]因为x1

函数f(x)=3x的三次方+2x,求f(a),f(-a),f(a)+f(-a)

f(x)=3x³+2xf(a)=3a³+2af(-a)=3(-a)³+2(-a)=-3a³-2af(a)+f(-a)=3a³+2a+(-3a³

已知a为实数,函数f(x)=x^3-x^2-x+a,求f(x)的极值

f'(x)=3x-2x-1所以令f'(x)=0得x=1或x=-1/3所以x1时为增函数,当-1/3

已知函数f(x)={x的平方-2x+3a,x大于等于2

x3即2^2-2*2+3a>3得a>1,2^2为2的平方f(x)=x^2-2x+3a=(x-1)^2+3a-1在x>=2时是增函数所以a>1

设a 为实数,函数f(x) = x^2 + |x-a| + 1,x属于R.1)讨论函数f(x)的奇偶性; 2)求函数f(

解(1)1`当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x)所以f(x)为偶函数2`当a不等于0f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)不等于f(-a),f(-a)不

已知函数f(x)=x^2+2x+a,g(x)=f(x)/x.

g(x)=f(x)/x=x+2+a/x=x+a/x+2≤-2*2+2=-2,当x=-2时等号成立,最大值-2.当a>0时,g(x)>0在[1,+∞),恒成立(证略)当a=0时,g(x)=x+2在[1,

已知函数f(x)=x/(x+1)+1/(x-1) 判断函数f(x)的奇偶性 比较f(a²+a+3)与f(-2)

f(x)=x/(x+1)+1/(x-1)=[x(x-1)+x+1]/(x²-1)=(x²+1)/(x²-1)=1+2/(x²-1),(1)易得f(-x)=f(x

已知函数f(x)=lg(x+a/x-2)

函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a

已知函数f(x)=(2-a)x+1,x

这个,是两个函数吧(1)f(x)=(2-a)x+1,x

已知函数f(x)=|x+a|+|x-2|

(1)当a=-3时,f(x)≥3即|x-3|+|x-2|≥3,即①x≤23−x+2−x≥3,或②2<x<33−x+x−2≥3,或③x≥3x−3+x−2≥3.解①可得x≤1,解②可得x∈∅,解③可得x≥

已知函数f(x)=x^2+/x-a/+1(x属于R),a>0,求f(x)的最小值.

1)x>=a时,f(x)=x^2+x-a+1=(x+1/2)^2-a+3/4,因为对称轴x=-1/2,a>0,所以在x>=a时单调增,最小为f(a)=a^2+12)x=1/2则最小值为f(1/2)=a

f(x)=x^x(x-a)的导函数

(1)若函数为:f(x)=x^[x(x-a)]f'(x)=[x(x-a)]*[x^(x^2-ax-1)]*[x(x-a)]'=(x^2-ax)*(2x-a)*[x^(x^2-ax-1)]=[2(x^3