函数f(x)=limxn 4-xn,判别f(x)在定义域内是否连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:10:29
函数f(x)=limxn 4-xn,判别f(x)在定义域内是否连续
已知函数f(x)=x

当x≥0时f(x)=x2+4x,可知f(x)在[0,+∞)上递增,当x<0时f(x)=4x-x2,可判断f(x)在(-∞,0)上递增,从而函数f(x)在R上单调递增由f(2-a2)>f(a),得2-a

判断分段函数f(x)=x(1-x),x

x0,f(-x)=-x(1-x)=-f(x);x>0时,-x再问:问一下。如果fx=x,x<0,x(1+x),x大于零的话也可以证到f(-x)=-(fx)但很显然不是奇函数。解释一下吧?再答:没看明白

函数f(x)=sinx,x

定义域不一定是R,但定义域一定是无界的,例如定义域为n,就是无限有规律的数,但可以是R的子集,因为上述函数的定义域不是无界的,不是周期函数,表达不太好,不知你明白没?概念:对于函数)(xfy=,如果存

函数F(X)={1+sinx,(x

1+sinx,(x再问:能给详细步骤吗再答:就是f(x)在x=0处的左右极限都存在且等于f(0)的值

函数f(x)=x

当x≤0时,由f(x)=0得x2-2=0,解得x=−2或x=2(舍去),当x>0时,由f(x)=0得2x-6+lnx=0,即lnx=6-2x,作出函数y=lnx和y=6-2x在同一坐标系图象,由图象可

已知函数f(x)的导函数f’(x)是一次函数,且x^2f'(x) - (2x - 1)f(x)=1,求函数f(x)

设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c

已知函数f(x)=分段函数:-x+1,x

分段函数分段讨论当X

函数f(x)=x-2 (x

因为f(x)=f(x-1),(x>=2)所以f(2)=f(1)=1-2=-1

函数f(x)=x

①当x≤0时,可求出f(x)=0的实数根,即x2+2x-3=0,解得:x1=-3,x2=1(舍去).②当x>0时,可求出f(x)=0的实数根,即-2+lnx=0,解得:x=e2.所以函数f(x)=x2

设f(x)={x分段函数

解题思路:利用图像数形结合解题解题过程:见附件同学你好,如对解答还有疑问,可在答案下方的【添加讨论】中留言,我收到后会尽快给你答复。感谢你的配合!祝你学习进步,生活愉快最终答案:略

设函数f(x)满足f(x)+2f(1/x)=x,求f(x)

f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3

设函数f(x)=x^2

解题思路:导数的计算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p

定义函数f(x)={1,x

这是一个分段函数,在x=0上有不同定义.(1)a=0时成立.正确(2)a^2>=0,b^2>=0,因此f(a^2)+f(b^2)=e^(a^2)+e^(b^2),以下是均值不等式.正确(3)a=b=-

设函数f(x)=x

∵f′(x)=xx2+1-a,当f′(x)<0时,得a>xx2+1=1−1x2+1≥0,又∵a>0,∴a>0时,f(x)在[0,+∞)上是单调函数.

若函数f(x)=3x

∵函数f(x)=3x2-4(x>0)π(x=0)0(x<0),∴f(0)=π,∴f(f(0))=f(π)=3×π2-4=3π2-4,故答案为3π2-4.

,研究函数f(x)=x-lnx,

1,证:f(x)=x-lnx=ln[(e^x)/x]当x>=e时:lnx>=1,f(x)-lnx=x>0,f(x)>max{lnx,1}成立.当0max{lnx,1}|x-1/2-lnx|>max{l

f(x)=x^x(x-a)的导函数

(1)若函数为:f(x)=x^[x(x-a)]f'(x)=[x(x-a)]*[x^(x^2-ax-1)]*[x(x-a)]'=(x^2-ax)*(2x-a)*[x^(x^2-ax-1)]=[2(x^3

已知函数f(x)=ax(x

由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递

已知函数f(x)= x-x^2,x

x=5时,f(x)=f(x-2)从而任何x>=5的值都是化成xf(8)=f(8-2)=f(6)=f(6-2)=f(4)=4-4^2=-12再问:�Ҳ����װ�f8Ϊʲô����f8-2再答:����

已知函数f(x)=x+lgx

因为F(x)在(1,10)上为连续函数设G(x)=F(x)—3,故G(x)在(1,10)上也为连续函数G(1)=-2,G(10)=8,G(1)0,故在(1,10)中存在m令G(m)=0G(m)=0,即