函数f(x)=lg根号1-x²的定义域为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:12:43
请问是根号下x的平方吗是的话x∈R因为x+根号下(x*2+1)恒>0是2x+1时先根号内为正即x>=-1\2又x+根号(2x+1)>=0所以x>=-根号(2x+1)两边平方x^2>=2x+1x^2-2
因为f(x)在其定义域内满足f(-x)=-f(x)这是奇函数的定义/再问:为什么f(-x)=-f(x)?再答:你按照我写的算一下,就会发现f(-x)=-f(x)
因为4-x^2>=4x+1>0所以-1
首先,4x-x^2=-(x-2)^2+4,值域为(-∞,4]所以根号下4x-x平方属于[0,2]4/根号下4x-x平方属于[2,+∞)1+4/根号下4x-x平方属于[3,+∞)所以f(x)的值域为[l
f(x)+f(-x)=lg[√(x²+1)-x]+lg[√(x²+1)+x]=lg[√(x²+1)-x][√(x²+1)+x]=lg(x²+1-x
先看定义域由于x+√(x^2+1)恒大于0所以x∈R-f(x)=-lg[x+√(x^2+1)]=lg{1/[x+√(x^2+1)]}=lg[√(x^2+1)-x]=f(-x)所以是奇函数再问:-f(x
函数f(x)=lg(x+根号下(x平方+1))是奇函数.该函数的定义域是R,对任意实数x,有f(-x)=lg[-x+根号下(x平方+1)]=lg{[-x+根号下(x平方+1)][x+根号下(x平方+1
1.定义域:-x+根号(x^2+1)>=0由于根号(x^2+1)>根号(x^2)=|x|所以,-X+根号(x^2+1)恒大于0.所以函数定义域是R.2.F(-x)+F(x)=lg(-x+√(x
首先x-1>0,然后分母不等于0求出x的范围即为定义域再问:分母能小于0么再答:可以啊,我说的是分母不等于0不等于0就可以>0或者<0
将根号(x^2+1)-x看做分母为1的一个分式,给分子分母同时乘以(x^2+1)+x之后分子就成了1,这个函数就变成了f(x)=lg[1/(根号(x^2+1)+x)];1/(根号(x^2+1)+x)就
如果lZ学过导数的话,直接对f(x)求导就行,得到导函数恒小于0;(定义域为R)如果没有学过,先对公式做一点改变:y=f(x)=lg(根号(x平方+1)-x)=lg[1/(根号(x平方+1)+x)]=
f(x)的单调性与g(x)=(根号1+x^2)-x相同(定义域为R)当x0时,先将g(x)化为g(x)=1/[(根号1+x^2)+x],g(x)随x的增大而减小所以g(x)为R上的减函数即f(x)为R
f(x)的定义域是整个实数集f(-x)=lg[(根号下x^2+1)-x]而-f(x)=-lg[(根号下x^2+1)+x]=lg﹛1/[(根号下x^2+1)+x]﹜把大括号内的表达式分母有理化就得到lg
(1):因为√(X^2+1)>√X^2=|X|,所以X+√(X^2+1)恒大于0,所以X∈R.(2):F(X)=lg[X+√(X^2+1)],F(-X)=lg[-X+√(X^2+1)]所以F(X)+F
f(x)=根号下(8/|x|-1)+lg(x^2-1)|x|-1>0|x|>1x>1或x0x^2>1x>1或x1或x
f(x)=lg[x+√(x^2+1)]1.函数f(x)=lg[x+√(x^2+1)]有意义只需x+√(x^2+1)>0因为x+√(x^2+1)=1/[√(x^2+1)-x]又x^2+1>x^2恒成立故
f(X)=lg[(根号下x²+1)+x]f(-X)=lg[(根号下x²+1)-x]f(x)+f(-X)=lg[(根号下x²+1)+x]+lg[(根号下x²+1)
是奇函数f(-x)=lg[根号下(x²+1)+x]f(x)+f(-x)=lg[根号下(x²+1)-x]+lg[根号下(x²+1)+x]=lg(x²+1-x
设y=lg(x+根号(x^2+1)),则x+根号(x^2+1)=10^y所以根号(x^2+1)=10^y-x.两边平方得x^2+1=x^2-2*10^y*x+10^(2y)所以2*10^y*x=10^
一.求函数的定义域:1)、f(x)=√[lg(4-x)];2)、f(x)=1/lg(2-x).1)、由4-x>0得x再问:我已经完全忘光了,lg这个要怎么算?比如lg(4-x)≧0这些内容是什么阶段的