函数f(x)=1 (x-3)ln(x^2 1)的间断点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:22:12
函数f(x)=1 (x-3)ln(x^2 1)的间断点
高二 导数 若函数f(x)=ln|x|-f (-1)x^2+3x+2 则

f'(-1)是常数所以f'(x)=1/x-f'(-1)*2x+3令x=-1f'(-1)=-1+f'(-1)*2+3f'(-1)=-2所以f'(x)=1/x+4x+3所以f'(1)=1+4+3=8

已知函数f(x)=1/2[3ln(x+2)-ln(x-2)]求x为何值时f(x)在[3,7]取得最大值

f(x)=1/2[3ln(x+2)-ln(x-2)],x>2y'=1/2[3/(x+2)-1/(x-2)],y'=03/(x+2)=1/(x-2),3x-6=x+2,x=420在[3,7]取得最大值=

函数f(x)=ln(1+x)的定义域

再答:对数函数的真数恒正x+1>0所以定义域为x>-1再问:已知i是虚数单位,若(m+i)^2=3-4i,则实数m的值为再答:再答:别只看答案,看看过程,那里不懂问问,超个答案下次还不会哦再问:能再问

导数题:已知函数F(x - 1/x)=ln x ,求F(x)的导数.

X-1/X=YXY=X-1X-XY=1X=1/1-YF(X)=LN(1/1-X)F'(x)=1/(1-x)

已知函数f(x)=ln(ax)/(x+1) - ln(ax) + ln(x+1),(a不等于0且为R) 1.求函数f(x

1.x+1>0,ax>0a>0时,x>0;a再问:.f'(x)=-lnax/(x+1)2-lnax不对啊..f(x)=ln(ax)/(x+1)-ln(ax)+ln(x+1)求导为什么是这个啊再答:求导

函数f(x)=ln|x-1|-x+3的零点个数为(  )

f(x)=0⇔ln|x-1|=x-3,所以f(x)的零点个数即函数y=ln|x-1|与函数y=x-3的交点的个数,作出函数y=x-3与函数y=ln|x-1|的图象,结合函数的图可知有3个交点,故选:D

设函数f(x)=ln(x+a)+x^2.

x1+x2=-ax1*x2=1/2,由此式看出x1,x2同号(1)当a0所以x1,x2都是正数那么x1加上一个正数等于-a所以x1必然小于-a同理x20即x>-a所以在定义域内不存在x使f'(x)=0

已知函数f(x)=ln(x+1)+ax

f'(x)=1/(x+1)+a>=2xa>=2x+1/(x+1)g(x)=2x+1/(x+1)g'(x)=2-1/(x+1)²1

已知函数f(x)=ln(x+1),

①f(x)=ln(x+1)定义域(-1,+∞)f(0)=0在(0,+∞)存在一点ε,0<ε<1/xf(1/x)-f(0)=f'(ε)(1/x-0)f'(x)=1/(x+1)∵0<ε<1/x∴1/(1/

求达人解四道函数题1.f(x)=4ln(6x+5ln(x)) f'(x)=?f'(4)=?2.f(x)=4ln(ln(x

首先要知道(lnx)'=1/x,然后一步一步求1.f'(x)=4*[1/(6x+5lnx)]*(6+5/x),f'(4)就把x=4带入2.f'(x)=4*(1/lnx)*(1/x)(a^x)'=lna

f(x)=ln(x+1)的导函数?f(x)=ln(2x+1)的导函数?

f(x)=ln(x+1)的导函数f'(x)=1/(x+1)f(x)=ln(2x+1)的导函数f'(x)=1/(2x+1)*(2x+1)'=2/(2x+1)

设函数f(x)=x-(x+1)ln(x+1)(x>-1)

1)f'(x)=-ln(x+1)所以f在(-1,0]上严格单调递增,[0,正无穷)上严格单调递减从而f的最大值为0且对任意x>0,f(x)

已知函数f(x)=e^x-ln(x+1).

1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+

f(x)=ln(x+1),对此函数求导,

f(x)=ln(x+1),则:f'(x)=[1/(x+1)]×(x+1)'.=[1/(x+1)]×1.=1/(x+1)

f(x)=ln(1+x)/x //ln(1+x)

楼主这么晚还没休息啊我想请问一下楼主的f(x)=ln(1+x)/x//ln(1+x)是从网上看到的?还是从书本上看到的?而且,我认为,楼主f(x)=ln(1+x)/x//ln(1+x)打多了一个除号,

函数f(x)=ln(x+1)-f(0)x-f’(0)x²+2,若f(x)≤x²+ax+b,求(b-3

f(0)=2所以f(x)=ln(x+1)-2x-f'(0)x^2+2求导:f'(x)=1/(x+1)-2-2f'(0)x令x=0:f'(0)=1-2=-1所以f(x)=ln(x+1)-2x+x^2+2

函数f(x)=[(x-1)ln(x-2)]/(x-3) 的零点有几个

一个是x=1因为若f(x)=[(x-1)ln(x-2)]/(x-3)=0则x-1=0或x-2=1所以只有x=1合题意.

将函数f(X)=ln(1+x+x^2+x^3)展开成x的幂级数

原式=ln(1+x)+ln(1+x^2)=sigma[(-1)^n*x^n/n!]+sigma[(-1)^n*(x^2)^n/n!]=sigma{(-1)^n*[x^n+x^(2n)]/n!}其中,s