函数f x=x2-1 x在区间(0,正无穷大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:20:26
解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2
很高兴为你虽然f(x),g(x)表达式一样,但定义域不同,是两个不同的函数那么:f(x)=x^2-2x=(x-1)^2-1,表示开口向上,顶点在(1,-1),对称轴为x=1的抛物线,因此函数f(x)在
f′(x)=3x²-3;(1)f(x)≥0;x≥1或x≤-1;单调递增区间为[1,﹢∞)∪﹙-∞,-1]单调递减区间为[-1,1](2)f(-3)=-27+9=-18;f(2)=8-6=2;
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0
证明增减性,通常考虑定义法任取x1x2∈(0,+∞)x1
f(x)=x^2+(a-1)x+a对称轴x=(1-a)/2所以(1-a)/2≤3解得a≥-5
先求导.x在1和2阶段大于或小于0.分情况讨论最后取并级.
解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调
1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a
由于f(x)=x²+ax+2,并且g(x)=f(x)+x²+1,那么可以得到g(x)=2x²++ax+3,如果g(x)在区间(1,2)上有两个零点,那么有如图所示回答:
本题不难,因为二次函数的对称轴为:x=8所以,函数在【-1,1】上单调递减,函数在【-1,1】上存在零点,则仅有一个零点在【-1,1】上,另一个在对称轴右边,所以一定有f(-1)=20+q≥0f(1)
再问:fx1-fx2化简再详细一点再答:不客气~天下高中生是一家嘛……加油!
你好!第一问:由题意得0=1+0*1+cc=-1所以函数为f(x)=x^2+bx-1画出图像,抛物线开口向上,最小值为x=0时,y=-1第二问:由f(x)=x^2+bx-1可知抛物线的对称轴为:x=-
f(0)=-2,f(1)=1,f(X)连接,增函数,只有一个交点.
奇函数然后取fx2–fx1再答:谢谢。
1)先求导,f‘(x)=e^x*x2+2x*e^x+e^x*x+e^x+ae^x因为在x=0处取得极值f'(0)=0a=-12)由1得,a=-1,所以f(x)=e^x.(x2+x-1)f‘(x)=e^
画出f(x)的图像可知,f(x)图像在y轴左侧横等于一,在y轴右侧为单调增且恒大于1则,由图像可得要使不等式成立需满足:1-x^2>0且2x
(1)由题意知x>0,f′(x)=2x-2/x=[2(x1)(x−1)]/x,令f′(x)=0,得x=-1(舍)或x=1当0<x<1时,f′(x)<0当x>1时,f′(x)>0∴f(x)的