函数f x=x2-1 x在区间(0,正无穷大

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:20:26
函数f x=x2-1 x在区间(0,正无穷大
已知函数fx=1/x²+1.判断函数fx在区间(0+∞)上的单调性并证明.求fx在区间[1,

解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2

已知函数fx=x2-2x,gx=x2-2x(x∈【2,4】} 求fx,gx的单调区间 求fx,gx的最小值

很高兴为你虽然f(x),g(x)表达式一样,但定义域不同,是两个不同的函数那么:f(x)=x^2-2x=(x-1)^2-1,表示开口向上,顶点在(1,-1),对称轴为x=1的抛物线,因此函数f(x)在

已知函数f(x)=x立方-3x,|(1)fx的单调区间(2)求函数fx在区间[-3 2]最值

f′(x)=3x²-3;(1)f(x)≥0;x≥1或x≤-1;单调递增区间为[1,﹢∞)∪﹙-∞,-1]单调递减区间为[-1,1](2)f(-3)=-27+9=-18;f(2)=8-6=2;

已知函数Fx=e的x次方+2x的平方-3x.(1)判断Fx在区间【0,1】上极值点情形及个数

求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点

已知函数fx=3^x-x^2 求方程fx+0在区间[-1,0]上实数个数

设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0

函数f(x)=x2-1/x在区间(0,正无穷大)上是增函数

证明增减性,通常考虑定义法任取x1x2∈(0,+∞)x1

已知函数fx=x2+(a-1)x+a在区间负无穷到三上是减函数,则a的取值范围为

f(x)=x^2+(a-1)x+a对称轴x=(1-a)/2所以(1-a)/2≤3解得a≥-5

fx=3x/a-2x2+lnx在区间【1,2】上为单调函数,求实数a的取值范围.

先求导.x在1和2阶段大于或小于0.分情况讨论最后取并级.

已知函数fx=x-1/2ax^2-ln(1+x) . 求 1,fx的单调区间 2,若fx在[0,

解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调

设函数fx=(ax+1-a)e的x次方,(1)求函数fx的单调区间;(2)若fx≥0在区间【1,2】上恒成立,求实数a的

1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a

已知函数fx=x2+ax+2,a属于R,若函数gx=fx+x2+1在区间(1,2)上有两个不同的零点

由于f(x)=x²+ax+2,并且g(x)=f(x)+x²+1,那么可以得到g(x)=2x²++ax+3,如果g(x)在区间(1,2)上有两个零点,那么有如图所示回答:

已知二次函数fx=x2-16x+q+3(1)若函数在区间【-1,1】上存在零点,求实数q的取值范围

本题不难,因为二次函数的对称轴为:x=8所以,函数在【-1,1】上单调递减,函数在【-1,1】上存在零点,则仅有一个零点在【-1,1】上,另一个在对称轴右边,所以一定有f(-1)=20+q≥0f(1)

证明函数fx=根号【x2+1】-2x在{0,+∞}上是减函数

再问:fx1-fx2化简再详细一点再答:不客气~天下高中生是一家嘛……加油!

已知函数fx=x2+bx+c.且f1=0.若b=0,(1)求函数fx在区间【-1.3】上的最值 (

你好!第一问:由题意得0=1+0*1+cc=-1所以函数为f(x)=x^2+bx-1画出图像,抛物线开口向上,最小值为x=0时,y=-1第二问:由f(x)=x^2+bx-1可知抛物线的对称轴为:x=-

求函数fx=2^x+x-2在区间(0,1)内零点的个数

f(0)=-2,f(1)=1,f(X)连接,增函数,只有一个交点.

已知函数fx=e^x.(x2+x+a)在x=0处取得极值,其中a∈R 1求a值 2函数fx单调区间

1)先求导,f‘(x)=e^x*x2+2x*e^x+e^x*x+e^x+ae^x因为在x=0处取得极值f'(0)=0a=-12)由1得,a=-1,所以f(x)=e^x.(x2+x-1)f‘(x)=e^

已知函数fx = x2+1 x>0 1 x

画出f(x)的图像可知,f(x)图像在y轴左侧横等于一,在y轴右侧为单调增且恒大于1则,由图像可得要使不等式成立需满足:1-x^2>0且2x

已知函数fx=x2-2lnx(1)求fx的单调区间(2)若fx≥2tx-1/x2在x属于(0,1]内恒成立求t的取值范围

(1)由题意知x>0,f′(x)=2x-2/x=[2(x1)(x−1)]/x,令f′(x)=0,得x=-1(舍)或x=1当0<x<1时,f′(x)<0当x>1时,f′(x)>0∴f(x)的