内外直径分别为的均匀带电球形壳层,求壳层区域内与球中心距离为r的p点处电场强度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:59:04
带电量为Q,半径为R.均匀带电球面内外场强及电势分布内部场强E=0球外部等效成球心处一点电荷E=KQ/r^2r>R电势相等球外部等效成球心处一点电荷Φ=KQ/r如果是均匀带电球体,结果与球壳相同
高斯定理做外面是pd/2ε0里面距离中心层x位置差场强px/2ε0
球内场强为0,电势相等为球壳处电势球外的电场和电势分布和把球上电荷看成集中在圆心的点电荷相同
由于挖去前后电荷分布不变,所以可以这样考虑:假设小球还没有挖去,则该小球对其中心产生的场强加上除去小球后的大球其余部分对这一点产生的场强,等于大球该点处的场强(由第一问可知具体表达式),由于挖去的小球
/>由高斯定理可求得球体内的电场强度 E=ρr/3ε (r<R) &
外面是均匀球壳便可以无视,所以内部就无视外侧的球壳,将内侧的球视为在圆心的点.在球外视为球心的点即可
取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)
1.设未被挖时均匀带电球体在空腔所在位置处的场强,因为是均匀带点球体,直接采用高斯公式即可.2.再求出被挖去的球体在所求位置处的场强,同样利用高斯公式.3.将一和二求出的场强进行矢量相减即可得所求.
外磁场为零,内磁场为B_r=1/2μ_0pw(R^2-r^2),其方方向与角速度方向相同.其中R为圆柱半径,B_r为距离轴线距离为r处的磁场的强度.
先用高斯定理求出电场分布,再积分得到电势.圆柱体内电场pr/2e,外电场pR^2/2re,e这里是真空介电常数.外电势-(pR^2)(lnr)/(2e),内电势[-(pR^2)(lnr)/(2e)]+
导体内表面带电-q,外表面带电q.1、导体球壳电势为q/4πε0R22、离球心1cm处电势为q/4πε0r-q/4πε0R1+q/4πε0R2r=1cm3,导体内表面带电-q,外表面带电q,导体球壳电
感觉你对面元的理解不够.你觉得面元上有很多点,从每个点到K点的连线的方向都不一样.事实确实是这样的,但是面元是面积趋于0的单元,前述的“不一样”在计算的时候是可以忽略的,也就说面元上任意一点到K点的距
V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了
高斯定理:∫Eds=Σqi 典型应用:利用E的分布对称性,合理选取高斯面,使高斯面上各点E的大小相等,面积分∫Eds就简化为ES,S为高斯面的面积.任意一
给你一个答案的网址:http://jpkc.cqu.edu.cn/ChongQ_2004_dxwl/lixiang2/other/xtjda/06/dxwl-xtda-060304.htm其中的习题1