内外半径分别为r1和r2的空心导体球壳,带电荷q当球壳中心处再放一电荷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:59:22
内外半径分别为r1和r2的空心导体球壳,带电荷q当球壳中心处再放一电荷
点电荷q 4.0×10^-10 C,处在导体球壳的中心,壳的内外半径分别为[R1]2.0cm和[R2]3.0cm ,求:

看你的样子似乎你有具体答案.第一题,静电平衡后,导体内部场强为0,在导体壳中作一同心球面为高斯面,用高斯定理可知高斯面内电荷代数和为0,因此导体壳内层带负电,由于导体壳本身电荷量代数和为0,因此外层带

如图,A、B两点所在的圆半径分别为r1和r2,这两个圆为同心圆,圆心处有一带正电为+Q的点电荷,内外圆间的电势差为U.一

(1)电子在B点受到的库仑力大小为F=kQqr2=kQer22       电子在该处的加速度为a=Fm=kQemr22(2)设电

半径为R1和R2(R1

第(2)问中,外球壳外表面因接地无电荷,内表面带电荷为-q再看第三问内球壳接地,电势为0!但要求带多少电荷,设为Q此时整个系统所带电荷在内球壳的合电势:U=kQ/R1+k(-q)/R2!这个式子的表达

两个带有等量异号的无限长同轴圆柱体面,半径分别为R1和R2(R1

用高斯定理做圆柱形高斯面,∮E.dS=E*2πrL=q/ε01,(

质量为M的空心圆柱体,质量均匀分布,其内外半径为R1和R2,求对通过其中心轴的转动惯量.

转动惯量=∫(r^2)*(M/(π(R2^2-R1^2)))*2πrdr的定积分,r从R1到R2=(1/2)M(R2^4-R1^4)/(R2^2-R1^2)=(1/2)M(R1^2+R2^2)

如图所示为皮带轮转动装置,主动轴O1上有两个半径分别为R1和R2的共轴轮,从动轴O2上的轮半径为R3,已知R1=2R2,

因为没有图,只能假如A在R1B在R2上C在R3,角速度A:B=1:1,因为在一个主动轴上转动.、、、、给你提示,同一个圆盘上角速度相等,同一根皮带连接的远上,线速度相等.然后就是求比值,根据v=wr,

点电荷q=4*10^(-10)放入不带电的导体球壳的球心处,球壳内外半径分别为R1=2厘米,R2...

导体内表面带电-q,外表面带电q.1、导体球壳电势为q/4πε0R22、离球心1cm处电势为q/4πε0r-q/4πε0R1+q/4πε0R2r=1cm3,导体内表面带电-q,外表面带电q,导体球壳电

已知三个同心圆的半径分别为r1,r2,r3,且r1

πr1^2=(1/2)πr2^2=(1/3)πr3^2r1:r2:r3=1:根号2:根号3

真空中,半径为R1的导体球外套一个内外半径为R2,R3的导体球体,当内球带电荷+Q,导体球不带电时

貌似你打错字了吧,应该是外球壳不带电吧?首先在厚球壳内部做一个高斯面因为厚球壳已经静电平衡,所以高斯面电通量是0所以高斯面包裹的总电荷为0所以厚球壳内表面带电-Q,易知内表面电荷分布均匀因为厚球壳原来

大学物理中册—电学—静电场-电势问题:两个同心均匀带电球面,内外半径电势分别为R1,R2,V1,V2

V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了

两颗人造卫星a、b轨道半径分别为R1和R2,且R1>R2,则

轨道半径的立方和周期的平方成正比对于椭圆轨道卫星的轨道高度和速度是不停变化的只有半径a和周期T是一定的

一个均匀带电球层,电荷密度为p,球层内表面半径R1,外表面半径R2,求空腔内外任一点的场强分布

高斯定理:∫Eds=Σqi    典型应用:利用E的分布对称性,合理选取高斯面,使高斯面上各点E的大小相等,面积分∫Eds就简化为ES,S为高斯面的面积.任意一

电势12.两个薄金属同心球壳,半径各为 R1 和 R2( R2 > R1),分别带有电荷 q1 的 q2,两者电势分别为

简单,首先你得弄清楚什么是电势.把单位正电荷从无穷远处移到某处所需的功.如果做正功,则电势为正,做负功则电势为负.在本题中,导线将球壳连接之后,球壳外部场强不变,内部即两球壳之间场强为零,两球壳成为等

两颗行星质量分别为m1和m2,它们绕太阳运动的轨道半径分别为R1和R2,若m1=2m2 ,R1=4R2,则他们周期之比T

开普勒定律,a三次/T方为常数,圆轨道,半长轴a=R,所以T1:T2=(R1/R2)^3/2=8

一内外半径分别为R1,R2的均匀带电球壳,点合体密度为p,试求球体内外个点的电荷分布

给你一个答案的网址:http://jpkc.cqu.edu.cn/ChongQ_2004_dxwl/lixiang2/other/xtjda/06/dxwl-xtda-060304.htm其中的习题1

两个半径分别为R1和R2(R1

这个题目根据高斯定理做.高斯定理:通过一个任意闭合曲面S的电通量Φ等于该面所包围的所有电荷电量的代数和∑q除以介电常数ε0.与闭合面外的电荷无关.公式表达为Φ=∮EcosθdS=(1/ε0)∑q其中E

一空心导体球壳,其内外半径分别是R1和R2,带电量q.当球壳中心放一电量q的电荷时,求球壳电势

球壳是等势体,不分内外,平衡后内表面为-q,外表面为2q,内表面的电势和中心电荷的电势抵消,总电势为2q/(4*PI*episilon*R2)