其中d是x^2 y^2=rx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:49:21
其中d是x^2 y^2=rx
求f(x,y)=xcos(x+y)的二重积分 其中D是直线y=2x x=2y x+y=3所围成的三角形区域

用直线x=1将区域分成D1与D2两部分,然后分别积分即可(如图)最后计算需要用分部积分法求出原函数,然后用微积分基本定理即牛顿-莱布尼茨公式求解

求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.

极坐标标∫∫√(R²-x²-y²)dxdy=∫∫r√(R²-r²)drdθ=∫[-π/2→π/2]dθ∫[0→Rcosθ]r√(R²-r&#

计算 ∫∫ln(e+x^2+y^2)do ,其中D=(x,y)|X^2+y^2《1

再问:极径r积分区域为什么是0

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

x^2+y^2+z^2=2rx求偏导 x,y

题目有没有抄错?按照上面的题目,再问:x^2+y^2+z^2=2rx对x求偏导2x+2zx'-2r=02r-2x/2z=r-x/z这是对x求偏导这么求没错把?对Y求你写的让我明白了貌似是我少加负号了第

(X,Y)是二维随机变量,证明 D(X±Y)=D(X)+D(Y)±2Cov(X,Y)

以D(X+Y)为例:D(X+Y)=E[(X+Y)-E(X+Y)]^2←方差的定义=E[X-E(X)+Y-E(Y)]^2=E[X-E(X)]^2+E[Y-E(Y)]^2+2E【[X-E(X)][Y-E(

计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2

应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

计算∫∫e^(-y^2)dxdy 其中D是由y=x,y=1及y轴所围成的区域

先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-

计算∫∫(D)x^2ydxdy,其中D是由曲线xy=1,y=√x,x=2围成的平面区域

可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.

计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域

看图片,不懂再问.再问:谢谢,我先看看

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

设f(x,y)连续,且f(x,y)= xy + ∫∫D f(u,v)dudv,其中D是由y=0,y=x……2,x=1所围

二重积分∫∫Df(u,v)dudv和∫∫Df(x,y)dxdy实际上是一样的,只是改变了字母显然在这个式子里,二重积分∫∫Df(u,v)dudv进行计算之后得到的是一个常数,不妨设其为a,即f(x,y