关于x的方程2x的平方-3x 2m=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:55:18
关于x的方程2x的平方-3x 2m=0
x1 x2是方程2x的平方-3x-1=0的两个根

/>x1,x2是方程2x²-3x-1=0的根,则x1满足方程2x1²-3x1-1=0另由韦达定理,得x1+x2=3/2x1x2=-1/2N=3x1²+x2²-3

已知关于x的方程x^2+2x+m^2=0的两实数根,且X1平方-X2平方=2,求M的值

由X1平方-X2平方=2知道(x1-x2)(x1+x2)=2而x1+x2=2m从而x1-x2=1/m这个式子两边平方得X1平方+X2平方-2X1X2平=1/m平方=(x1+x2)平方-4X1X2=4-

已知关于x的方程3a-x=x2

∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3解得:a=2,∴原式=a2-2a+1=22-2×2+1=1.

(x2+5x+2)(x2+5x+3)-12怎么因式分解 (x2)是x的平方,

把x2+5x看成是一个未知数Y,就可以解了

关于X的方程3X平方-5X+K=0的两根X1,X2满足Y乘以X1+X2=0,求K

由YX1+X2=0,得X2=-YX1,代入原方程:3(-YX1)^2-5(-YX1)+K=0-3Y*X1^2+5Y*X1+K=0与X1代入原方程的形式进行比对:3X1^2-5X1+K=0二者系数不变:

设x1,x2为方程2x平方+3x-4=0的两个实数根,不解方程求x1平方+x2平方的值

根据韦达定理x1+x2=-3/2,x1x2=-2所以x1²+x2²=(x1+x2)²-2x1x2=(-3/2)²+4=9/4+4=25/4

已知关于x的方程3x2-5x-2=0,且关于y的方程的两根是x方程的两根的平方,求关于y的方程.

x1+x2=5/3x1x2=-2/3所以x1²+x2²=(x1+x2)²-2x1x2=37/9x1²x2²=(x1x2)²=4/9所以y&#

2x-6x2(x的平方)+2-6x2(x的平方)+3x+6

原式=-12x2+5x+8用解二次方程的式子代入,得X1=0.5X2=-1/12

已知方程3x/x+1减去x+4/x2+x等于-2的解是k,求关于x的方程x2+kx=0的解

3x/(x+1)-(x+4)/(x^2+x)=-23x^2-(x+4)=-2(x^2+x)3x^2-x-4=-2x^2-2x5x^2+x-4=0(5x-4)(x+1)=0x1=4/5x2=-1经检验,

关于X方程2X平方-3X+M=0的实数X1,X2

x1+x2=3/2x1x2=m/21.△=9-8m>=0,∴m0,∴m>0∴0

已知,关于x的方程x的平方+(2k+1)x+k-1=0,其中k为实数 设方程的两根为x1,x2,且满足2x1+x2=3,

解题思路:本题考查了一元二次方程的根与系数的关系,利用根与系数的关系得到两根之和,得到x1,再结合x1是方程的解,代入原方程,即可得到关于k的方程,求出方程的解即可。解题过程:解:由题意得:x1+x2

若关于x的方程x的平方+2mx+m的平方+3m+2=0有两个实根x1,x2,则x1(x1+x2)+x2的平方的最小值是多

再问:大神佩服纯手写再照一张可以吗有的看不清再答:再问:最后等于-4/5吧?再答:你题写的是那样,我绝对没写错,你看看我发的第二张图片再问:好吧我的化简....不想说什么了

已知关于x的方程x的平方减x加m等于0有2个实数根X1和X2,且|x1+x2|

x²-x+m=0∵有2个实数根∴△>0根据韦达定理x1+x2=-b/a=-1|x1+x2|=1≮1∴M∈∅是不是条件|x1+x2|0m

若X1,X2是关于X的方程X平方减2X加M减3等于0,求Y=X1+X2的最小值?

用维达定理(X2)+(X1)=(-a分之b)=(-1分之-2)=2(X1)*(X2)=(a分之c)=(-1分之m-3)所以(X2)+(X1)最小是2

已知,关于x的方程x的平方-2mx等于-m的平方+2x的两个实数根x1,x2满足|x1|等于x2,求m

x^2-2mx=-m^2+2xx^2-2(m-1)x+m^2=0△=[-2(m-1)]^2-4*1*m^2=4m^2-8m+4-4m^2=4(1-2m)x1+x2=2(m-1)|x1|=x21)当x1

设x1、x2是关于x的方程x的平方+2x+k+1=0的实数解是x1和x2

在求解答网上帮你找到了一道相似题,看看吧,如有不懂可继续追问.

设关于x的方程x2+(ax

原方程变形为(x+ax)2-7(x+ax)+12=0,(x+ax-3)(x+ax-4)=0,x+ax=3或x+ax=4则x2-3x+a=0或x2-4x+a=0,对于x2-3x+a=0,△=9-4a=0

已知关于X的方程X的平方+(2-K)X+K-2=0,两实数根为X1,X2是否存在常数K,使X1/X2+X2/X1=3/2

x1/x2+x2/x1=(x1^2+x2^2)/x1x2=[(x1+x2)^2-2x1x2]/x1x2韦达定理的x1+x2=k-2,x1x2=k-2带进去x1/x2+x2/x1=(x1^2+x2^2)

关于x的方程x2-3k

根据题意得k≥0且△=(-3k)2-4×(-1)≥0,解得k≥0.故答案为k≥0.