关于x的方程2 x 1 5 1-x=m x²-1有增根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:43:13
当m的取值满足什么条件时,关于x的方程[3/x]+[6/x-1]=x+m/x(x-1)不会产生增根两边乘x(x-1)3(x-1)+6x=x+m增根即公分母为0x(x-1)=0x=0,x=1x=0代入3
x/(x-2)+(x-2)/x+(2x+m)/[x(x-2)]=0只有一个实数根,求m值.方程两边同时乘以x(x-2),去分母得x^2+(x-2)^2+2x+m=0化简得:2x^2-2x+4+m=0由
x²+2x+m=0(x+1)²=(1-m)=(m-1)i²(其中,i²=-1)x+1=±(√(m-1))ix=±(√(m-1))i-1又因为|α|+|β|=4,
解题思路:本题主要考察了对一元一次方程的解的理解的问题。解题过程:
方程2/[x-2]+[x+m]/[2-x]=2有增根2-(x+m)=2(x-2)2-x-m=2x-4x=(6-m)/3当X=2时有增根,则有2=(6-m)/3m=0
x/(x-3)=(2x-6+m)/(x-3);因为有增根;所以分子解出来的解使分母为0;即x=32x-6+m=x解集为x=3;6-6+m+3;m=3;很高兴为您解答,skyhunter002为您答疑解
x/(x-2)-2=m^2/(x-3)(4-x)/(x-2)=m^2/(x-3)(4-x)(x-3)/(x-2)(x-3)=m^2(x-2)/(x-3)(x-2)[x^2-(7-m^2)x+12-2m
x^3-(2m+1)x^2+(3m+2)x-m-2=(x^3-x^2)-(2mx^2-2mx)+[(m+2)x-(m+2)]=x^2(x-1)-2mx(x-1)+(m+2)(x-1)=(x-1)(x^
最简公分母是(x-2)(x-1)去分母得(x-1)^2=m(x-2)+(x-2)(x-1)x^2-2x+1=mx-2m+x^2-3x+3(1-m)x+2m-2=0(1-m)x=2(1-m)所以m不等于
这里不仅要考虑到分母有意义问题,还要注意到方程的有无解问题.由于1为增根,则将方程两边同时乘以X-1,得2m(X-1)+X+m=0,将X=1带入解得m的值为-1,下面考虑增根不是1的情况,即分母本身是
方程化为x^2+(2m+1)x+m^2-2=0.(1)方程有两个相等的实根,则判别式为0,即(2m+1)^2-4(m^2-2)=0,解得m=-9/4,此时方程化为x^2-7/2*x+49/16=0,分
(1-m)x=1-2x得(3-m)x=1以为x3
x²-3x=m²-m-2x²-3x+9/4=m²-m+1/4(x-3/2)²=(m-1/2)²得x-3/2=m-1/2x=m+1或x-3/2
x^2+2mx+m^2-3x-m^2/3=0x^2+(2m-3)x=-2m^2/3x^2+(2m-3)x+(2m-3)^2/4=-2m^2/3+(2m-3)^2/4[x+(2m-3)/2]^2=(4m
方程判别式△=[-2(m+1)]²-4·4·m=4m²-8m+4=4(m-1)²恒≥0,方程恒有实根.设两根分别为x1,x2,由韦达定理得x1+x2=2(m+1)/4=(
|x-2|+|x-3|=m当x≤2时,x-2≤0,x-3<0,则原式可化为:-x+2-x+3=m,x=(5-m)/2当2<x<3时,x-2>0,x-3<0,则原式可化为:x-2-x+3=m,m=1当x
x/(x-3)=2-m/(3-x)等式两边同时去分母,可得:x=2x-6+m所以x=6-m又该方程有一个正数解所以x=6-m>0,m
x^2=m/ax=±√(m/a)再问:确定化到这一步就可以了吗再答:只能如此了